-
Dumpuri P, Thompson RC, Cao A, Ding S, Garg I, Dawant BM, Miga MI. A fast and efficient method to compensate for brain shift for tumor resection therapies measured between preoperative and postoperative tomograms. IEEE transactions on bio-medical engineering. 2010 Jun;57(57). 1285-96. NIHMSID: NIHMS157198.
Abstract
In this paper, an efficient paradigm is presented to correct for brain shift during tumor resection therapies. For this study, high resolution preoperative (pre-op) and postoperative (post-op) MR images were acquired for eight in vivo patients, and surface/subsurface shift was identified by manual identification of homologous points between the pre-op and immediate post-op tomograms. Cortical surface deformation data were then used to drive an inverse problem framework. The manually identified subsurface deformations served as a comparison toward validation. The proposed framework recaptured 85% of the mean subsurface shift. This translated to a subsurface shift error of 0.4 +/- 0.4 mm for a measured shift of 3.1 +/- 0.6 mm. The patient's pre-op tomograms were also deformed volumetrically using displacements predicted by the model. Results presented allow a preliminary evaluation of correction both quantitatively and visually. While intraoperative (intra-op) MR imaging data would be optimal, the extent of shift measured from pre- to post-op MR was comparable to clinical conditions. This study demonstrates the accuracy of the proposed framework in predicting full-volume displacements from sparse shift measurements. It also shows that the proposed framework can be extended and used to update pre-op images on a time scale that is compatible with surgery.