Regulation of aggressive behaviors by nicotinic acetylcholine receptors: Animal models, human genetics, and clinical studies.


Neuropsychiatric disorders are frequently complicated by aggressive behaviors. For some individuals, existing behavioral and psychopharmacological treatments are ineffective or confer significant side effects, necessitating development of new ways to treat patients with severe aggression. Nicotinic acetylcholine receptors (nAChRs) are a large and diverse family of ligand-gated ion channels expressed throughout the brain that influence behaviors highly relevant for neuropsychiatric disorders, including attention, mood, and impulsivity. Nicotine and other drugs targeting nAChRs can reduce aggression in animal models of offensive, defensive, and predatory aggression, as well as in human laboratory studies. Human genetic studies have suggested a relationship between the CHRNA7 gene encoding the alpha-7 nAChR and aggressive behavior, although these effects are heterogeneous and strongly influenced by genetic background and environment. Here we review animal, human genetic, and clinical studies supporting a consistent role of nicotine and nAChR signaling in modulation of aggressive behaviors. We integrate findings from recent studies of aggression neuroscience, discuss the circuitry that may be involved in these effects of nAChRs, and identify multiple key questions that must be answered prior to safe and effective translation for human patients. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.