Speech recognition as a function of the number of channels for Mid-Scala electrode array recipients.


This study investigated the number of channels needed for maximum speech understanding and sound quality in 15 adult cochlear implant (CI) recipients with Advanced Bionics (AB) Mid-Scala electrode arrays completely within scala tympani. In experiment I, CI programs used a continuous interleaved sampling (CIS)-based strategy and 4-16 active electrodes. In experiment II, CI programs used an n-of-m strategy featuring 16 active electrodes with either 8- or 12-maxima. Speech understanding and sound quality measures were assessed. For CIS programs, participants demonstrated performance gains using up to 4-10 electrodes on speech measures and sound quality ratings. For n-of-m programs, there was no significant effect of maxima, suggesting 8-maxima is sufficient for this sample's maximum performance and sound quality. These results are largely consistent with previous studies using straight electrode arrays [e.g., Fishman, Shannon, and Slattery (1997). J. Speech Lang. Hear. Res. 40, 1201-1215; Friesen, Shannon, Baskent, and Wang (2001). J. Acoust. Soc. Am. 110, 1150-1163; Shannon, Cruz, and Galvin (2011). Audiol. Neurotol. 16, 113-123; Berg, Noble, Dawant, Dwyer, Labadie, and Gifford (2020). J. Acoust. Soc. Am. 147, 3646-3656] and in contrast with recent studies looking at cochlear precurved electrode arrays [e.g., Croghan, Duran, and Smith (2017). J. Acoust. Soc. Am. 142, EL537-EL543; Berg, Noble, Dawant, Dwuer, Labadie, and Gifford (2019b). J. Acoust. Soc. Am. 145, 1556-1564], which found continuous improvements up to 16 independent channels. These findings suggest that Mid-Scala electrode array recipients demonstrate similar channel independence to straight electrode arrays rather than other manufacturer's precurved electrode arrays.