Effect of motion on speech recognition.


The benefit of spatial separation for talkers in a multi-talker environment is well documented. However, few studies have examined the effect of talker motion on speech recognition. In the current study, we evaluated the effects of (1) motion of the target or distracters, (2) a priori information about the target and distracter spatial configurations, and (3) target and distracter location. In total, seventeen young adults with normal hearing were tested in a large anechoic chamber in two experiments. In Experiment 1, seven stimulus conditions were tested using the Coordinate Response Measure (Bolia et al., 2000) speech corpus, in which subjects were required to report the key words in a target sentence presented simultaneously with two distracter sentences. As in previous studies, there was a significant improvement in key word identification for conditions in which the target and distracters were spatially separated as compared to the co-located conditions. In addition, 1) motion of either talker or distracter resulted in improved performance compared to stationary presentation (talker motion yielded significantly better performance than distracter motion) 2) a priori information regarding stimulus configuration was not beneficial, and 3) performance was significantly better with key words at 0° azimuth as compared to -60° (on the listener's left). Experiment 2 included two additional conditions designed to assess whether the benefit of motion observed in Experiment 1 was due to the motion itself or to the fact that the motion conditions introduced small spatial separations in the target and distracter key words. Results showed that small spatial separations (on the order of 5-8°) resulted in improved performance (relative to co-located key words) whether the sentences were moving or stationary. These results suggest that in the presence of distracting messages, motion of either target or distracters and/or small spatial separation of the key words may be beneficial for sound source segregation and thus for improved speech recognition.