Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h(2)∼0.7), the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG) interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, p = 1.22e-25), LIPC (rs11855284, p = 3.92e-14), LPL (rs12678919, p = 1.99e-7), and the APOA1/C3/A4/A5 locus (rs964184, p = 1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol.