Phenome-Wide Association Studies as a Tool to Advance Precision Medicine.

Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant.

Joint mouse-human phenome-wide association to test gene function and disease risk.

Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for ∼5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort.

The phenotypic legacy of admixture between modern humans and Neandertals.

Many modern human genomes retain DNA inherited from interbreeding with archaic hominins, such as Neandertals, yet the influence of this admixture on human traits is largely unknown. We analyzed the contribution of common Neandertal variants to over 1000 electronic health record (EHR)-derived phenotypes in ~28,000 adults of European ancestry. We discovered and replicated associations of Neandertal alleles with neurological, psychiatric, immunological, and dermatological phenotypes.

Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance.

To evaluate the phenotyping performance of three major electronic health record (EHR) components: International Classification of Disease (ICD) diagnosis codes, primary notes, and specific medications.

Penetrance of Hemochromatosis in HFE Genotypes Resulting in p.Cys282Tyr and p.[Cys282Tyr];[His63Asp] in the eMERGE Network.

Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder associated with pathogenic HFE variants, most commonly those resulting in p.Cys282Tyr and p.His63Asp. Recommendations on returning incidental findings of HFE variants in individuals undergoing genome-scale sequencing should be informed by penetrance estimates of HH in unselected samples.

Complement receptor 1 gene variants are associated with erythrocyte sedimentation rate.

The erythrocyte sedimentation rate (ESR), a commonly performed test of the acute phase response, is the rate at which erythrocytes sediment in vitro in 1 hr. The molecular basis of erythrocyte sedimentation is unknown. To identify genetic variants associated with ESR, we carried out a genome-wide association study of 7607 patients in the Electronic Medical Records and Genomics (eMERGE) network. The discovery cohort consisted of 1979 individuals from the Mayo Clinic, and the replication cohort consisted of 5628 individuals from the remaining four eMERGE sites.

Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk.

ECG QRS duration, a measure of cardiac intraventricular conduction, varies ≈2-fold in individuals without cardiac disease. Slow conduction may promote re-entrant arrhythmias.

Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1) non-synonymous SNPs (nsSNPs) associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1) thrombosis, evaluated in a population of 1,655 African Americans; and (2) four groupings of cancer diagnoses, evaluated in 3,009 white European Americans.

Integrating EMR-linked and in vivo functional genetic data to identify new genotype-phenotype associations.

The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects.

PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations.

Emergence of genetic data coupled to longitudinal electronic medical records (EMRs) offers the possibility of phenome-wide association scans (PheWAS) for disease-gene associations. We propose a novel method to scan phenomic data for genetic associations using International Classification of Disease (ICD9) billing codes, which are available in most EMR systems. We have developed a code translation table to automatically define 776 different disease populations and their controls using prevalent ICD9 codes derived from EMR data.