Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies.

We repurposed existing genotypes in DNA biobanks across the Electronic Medical Records and Genomics network to perform a genome-wide association study for primary hypothyroidism, the most common thyroid disease. Electronic selection algorithms incorporating billing codes, laboratory values, text queries, and medication records identified 1317 cases and 5053 controls of European ancestry within five electronic medical records (EMRs); the algorithms' positive predictive values were 92.4% and 98.5% for cases and controls, respectively.

Associations of autoantibodies, autoimmune risk alleles, and clinical diagnoses from the electronic medical records in rheumatoid arthritis cases and non-rheumatoid arthritis controls.

The significance of non-rheumatoid arthritis (RA) autoantibodies in patients with RA is unclear. The aim of this study was to assess associations of autoantibodies with autoimmune risk alleles and with clinical diagnoses from the electronic medical records (EMRs) among RA cases and non-RA controls.

A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects.

Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways.

Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data.

Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes.

R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment.

Phenome-wide association studies (PheWAS) have been used to replicate known genetic associations and discover new phenotype associations for genetic variants. This PheWAS implementation allows users to translate ICD-9 codes to PheWAS case and control groups, perform analyses using these and/or other phenotypes with covariate adjustments and plot the results. We demonstrate the methods by replicating a PheWAS on rs3135388 (near HLA-DRB, associated with multiple sclerosis) and performing a novel PheWAS using an individual's maximum white blood cell count (WBC) as a continuous measure.

Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index.

Phenome-wide association studies (PheWAS) have demonstrated utility in validating genetic associations derived from traditional genetic studies as well as identifying novel genetic associations. Here we used an electronic health record (EHR)-based PheWAS to explore pleiotropy of genetic variants in the fat mass and obesity associated gene (FTO), some of which have been previously associated with obesity and type 2 diabetes (T2D).

TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits.

Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits.

Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.

Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor.

Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to Eosinophilic Esophagitis.

We report the first pediatric specific Phenome-Wide Association Study (PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS in adult populations, we investigated the feasibility of this approach in pediatric cohorts in which associations between a previously known genetic variant and a wide range of clinical or physiological traits were evaluated. Although computationally intensive, this approach has potential to reveal disease mechanistic relationships between a variant and a network of phenotypes.