Cardiac index is associated with brain aging: the Framingham Heart Study.

Abstract

BACKGROUND:

Cardiac dysfunction is associated with neuroanatomic and neuropsychological changes in aging adults with prevalent cardiovascular disease, theoretically because systemic hypoperfusion disrupts cerebral perfusion, contributing to subclinical brain injury. We hypothesized that cardiac function, as measured by cardiac index, would be associated with preclinical brain magnetic resonance imaging (MRI) and neuropsychological markers of ischemia and Alzheimer disease in the community.

METHODS AND RESULTS:

Brain MRI, cardiac MRI, neuropsychological, and laboratory data were collected on 1504 Framingham Offspring Cohort participants free of clinical stroke, transient ischemic attack, or dementia (age, 61+/-9 years; 54% women). Neuropsychological and brain MRI variables were related to cardiac MRI-assessed cardiac index (cardiac output/body surface area). In multivariable-adjusted models, cardiac index was positively related to total brain volume (P=0.03) and information processing speed (P=0.02) and inversely related to lateral ventricular volume (P=0.048). When participants with clinically prevalent cardiovascular disease were excluded, the relation between cardiac index and total brain volume remained (P=0.02). Post hoc comparisons revealed that participants in the bottom cardiac index tertile (values <2.54) and middle cardiac index tertile (values between 2.54 and 2.92) had significantly lower brain volumes (P=0.04) than participants in the top cardiac index tertile (values >2.92).

CONCLUSIONS:

Although observational data cannot establish causality, our findings are consistent with the hypothesis that decreasing cardiac function, even at normal cardiac index levels, is associated with accelerated brain aging.