New Ph.D. Track in Big Biomedical Data Science!

March 23, 2016

Beginning in Fall 2016, Vanderbilt University’s Big Biomedical Data Science (BIDS) Training Program will 1) provide matriculating PhD students with access to a diverse array of real big biomedical data sets, software tools, and applications at Vanderbilt (and interdisciplinary collaborations) and 2) integrate courses and faculty from across the institution to ensure that students are well-versed in the foundational competencies of computation, statistics, and biomedical science that are necessary to achieve reproducible success in this field. The program has been formed as a new Data Science Track within the existing Vanderbilt Biomedical Informatics PhD program. Thanks to a grant from the National Institutes of Health Big Data to Knowledge (BD2K) program, funding for accepted applicants includes tuition, stipend, health insurance, and travel allowance for up to five years, is available for eligible candidates. For more information on how to apply, please visit:


Program Directors

Jeffrey Blume, Ph.D. Associate Professor of Biostatistics

Cynthia Gadd, Ph.D. Professor of Biomedical Informatics

Bradley Malin, Ph.D., Associate Professor of Biomedical Informatics and Computer Science


Curriculum Overview of the Data Science Track of the BMI PhD Program

A key aspect of our training philosophy is that students need to be exposed to a variety of real world research applications and innovations along the big data spectrum while they are setting their methodological foundation in biomedical informatics, computer science, and statistics. Vanderbilt has an outstanding environment for this, as big data paradigms are being used in a wide range of interesting biomedical and health policy applications, e.g. *omics analysis, protein functioning based on structural biology, the development of decision support tools for clinicians based on EMR data, the development of precision medicine regimens. This fully integrated philosophy effectively marries real world applications of big data methods with their foundations, making the governing principles of data science - namely generalizability, reproducibility, and validity - much less abstract. A welcome by product of this is that students are often encouraged to contribute to projects by building tools that often end up being widely used for similar applications. 

The BIDS PhD program will be organized to provide all matriculating students with a shared core curriculum that is split across four areas. 1) Biomedical Informatics - courses in the foundations of clinical informatics and bioinformatics and the methods that support them; 2) Computer Science - courses in data structures, algorithms, machine learning, and big data infrastructure, 3) Statistical Methods - courses in biostatistics that follow a progression of basic principles to regression analysis and modeling and conclude with statistical inference methodologies, and 4) Biomedical Science - courses in the School of Nursing (for students focused on modeling, managing, and analyzing data from the clinical domain and studying clinical workflow) and the general biomedical graduate school program, which covers a wide range of topics from biochemistry to immunology.