TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response.

Abstract

RIG-I-like receptors (RLRs) are involved in the discrimination of self versus non-self via the recognition of double-stranded RNA (dsRNA). Emerging evidence suggests that immunostimulatory dsRNAs are ubiquitously expressed but are disrupted or sequestered by cellular RNA binding proteins (RBPs). TDP-43 is an RBP associated with multiple neurological disorders and is essential for cell viability. Here, we demonstrate that TDP-43 regulates the accumulation of immunostimulatory dsRNA. The immunostimulatory RNA is identified as RNA polymerase III transcripts, including 7SL and Alu retrotransposons, and we demonstrate that the RNA-binding activity of TDP-43 is required to prevent immune stimulation. The dsRNAs activate a RIG-I-dependent interferon (IFN) response, which promotes necroptosis. Genetic inactivation of the RLR-pathway rescues the interferon-mediated cell death associated with loss of TDP-43. Collectively, our study describes a role for TDP-43 in preventing the accumulation of endogenous immunostimulatory dsRNAs and uncovers an intricate relationship between the control of cellular gene expression and IFN-mediated cell death.