Comparative genomics of Staphylococcus aureus musculoskeletal isolates.

Abstract

Much of the research aimed at defining the pathogenesis of Staphylococcus aureus has been done with a limited number of strains, most notably the 8325-4 derivative RN6390. Several lines of evidence indicate that this strain is unique by comparison to clinical isolates of S. aureus. Based on this, we have focused our efforts on two clinical isolates (UAMS-1 and UAMS-601), both of which are hypervirulent in our animal models of musculoskeletal infection. In this study, we used comparative genomic hybridization to assess the genome content of these two isolates relative to RN6390 and each of seven sequenced S. aureus isolates. Our comparisons were done by using an amplicon-based microarray from the Pathogen Functional Genomics Resource Center and an Affymetrix GeneChip that collectively represent the genomes of all seven sequenced strains. Our results confirmed that UAMS-1 and UAMS-601 share specific attributes that distinguish them from RN6390. Potentially important differences included the presence of cna and the absence of isaB, sarT, sarU, and sasG in the UAMS isolates. Among the sequenced strains, the UAMS isolates were most closely related to the dominant European clone EMRSA-16. In contrast, RN6390, NCTC 8325, and COL formed a distinct cluster that, by comparison to the other four sequenced strains (Mu50, N315, MW2, and SANGER-476), was the most distantly related to the UAMS isolates and EMRSA-16.