PROGRAM DESCRIPTION IN BRIEF

Germs, Defenses, & Diseases research program provides opportunities for undergraduates to learn quantitative biology through hands-on bench research. Research areas include infection biology and immunology, and cell and molecular bases of diseases that ail mankind. This research program is supported by the Vanderbilt Institute for Infection, Immunology, & Inflammation (VI4) and the Department of Pathology, Microbiology, and Immunology (PMI). Germs, Defenses, & Diseases research program was launched in the summer of 2017. In 2017, the program hosted SEVEN VI4 Scholars, one of whom was supported by a VI4 summer research scholarship.

Germs, Defenses, & Diseases research program has grown in the past year. It provides two opportunities for hands on research experience within a VI4 or PMI Faculty laboratory:

- One opportunity is full-time and runs during the summer months. This opportunity is available to all rising sophomores, juniors, seniors, as well as seniors graduating in the fall following the summer.
- The second opportunity is part-time that runs through the school year. This is a great opportunity for sophomores, juniors and seniors attending Vanderbilt or a college/university in the Nashville area.

2018 SUMMER RESEARCH REPORT

Recruitment into the 2018 summer research program was made through the Vanderbilt Summer Science Academy by nation-wide search for young talents. Thirteen VI4 Summer Scholars were recruited and joined the program. The 13 VI4 Summer Scholars came from a variety of different colleges and universities in the US (Table 1). They ranged from rising sophomore to rising senior in their undergraduate education (Table 1).

<table>
<thead>
<tr>
<th>Name</th>
<th>Year in College/University, 2018</th>
<th>Undergraduate College/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meagan Branch</td>
<td>rising senior</td>
<td>Elon University</td>
</tr>
<tr>
<td>Karyssa Yvonne Clark</td>
<td>rising junior</td>
<td>Illinois Wesleyan University</td>
</tr>
<tr>
<td>Noyna Francheska Fabre</td>
<td>rising senior</td>
<td>Hunter College</td>
</tr>
<tr>
<td>Rachel Alicia Francis</td>
<td>rising senior</td>
<td>Sewanee: The University of the South</td>
</tr>
<tr>
<td>Jordan Galbraith</td>
<td>rising junior</td>
<td>Vanderbilt University</td>
</tr>
<tr>
<td>Micah Harris</td>
<td>rising senior</td>
<td>Wright State University</td>
</tr>
<tr>
<td>Chanelle Hunter</td>
<td>senior, graduating Dec’18</td>
<td>University of Central Florida</td>
</tr>
</tbody>
</table>

Supported by Short-Term Training Program for Minority Students
TABLE 1 continued …

Supported by Short-Term Training Program for Minority Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Year in College/University, 2018</th>
<th>Undergraduate College/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caroline McLaughlin</td>
<td>rising junior</td>
<td>Emory University</td>
</tr>
<tr>
<td>Leah S. Rowe</td>
<td>rising junior</td>
<td>University of Arkansas at Pine Bluff</td>
</tr>
</tbody>
</table>

Supported by VI4 Summer Scholarship

<table>
<thead>
<tr>
<th>Name</th>
<th>Year in College/University, 2018</th>
<th>Undergraduate College/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Lindsay Castellanos</td>
<td>rising sophomore</td>
<td>Indiana University, Bloomington</td>
</tr>
<tr>
<td>Eliot TC Forster-Benson</td>
<td>rising junior</td>
<td>Vanderbilt University</td>
</tr>
<tr>
<td>Myriam Shehata</td>
<td>rising sophomore</td>
<td>Vanderbilt University</td>
</tr>
<tr>
<td>Lorryaya Louise Williams</td>
<td>rising senior</td>
<td>Calvin College</td>
</tr>
</tbody>
</table>

Four Summer Scholars were supported by the VI4 Summer Scholarship. The remaining nine Summer Scholars were supported through an R25 grant entitled “Short-Term Training Program (STTP) for Minority Students for research in Vascular Biology” awarded by the NHLBI/NIH. The 13 VI4 Summer Scholars trained in 12 different laboratories (Table 2). Research in the 12 host laboratories covered a wide range of topics (Table 2).

TABLE 2: Names, host laboratory and research title

Supported by Short-Term Training Program for Minority Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Host laboratory</th>
<th>Research title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meagan Branch</td>
<td>Michells Southard-Smith, Ph.D.</td>
<td>The role of Pax3 in the development and differentiation of Pelvic Ganglia</td>
</tr>
<tr>
<td>Karyssa Yvonne Clark</td>
<td>Julie Sterling, Ph.D.</td>
<td>Regulation of integrin expression and signaling by Gli2 in tumor-induced bone disease</td>
</tr>
<tr>
<td>Noyna Francheska Fabre</td>
<td>Donald Alcendor, Ph.D. Meharry</td>
<td>Assessment of BK Virus replication in cellular components of the human glomerular vascular unit: implications for BK virus associated nephropathy</td>
</tr>
<tr>
<td>Rachel Alicia Francis</td>
<td>Kevin Niswender, M.D., Ph.D.</td>
<td>A glucagon-like peptide-1 receptor variant contributes to cardioprotection</td>
</tr>
</tbody>
</table>
TABLE 2 continued …

Supported by Short-Term Training Program for Minority Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Host Laboratory</th>
<th>Research Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan Galbraith</td>
<td>Jeffrey Conn, Ph. D.</td>
<td>Dopamine regulation via allosteric modulation of the M1 receptor: implications for the negative symptoms of schizophrenia</td>
</tr>
<tr>
<td>Micah Harris</td>
<td>Jeff Reese, M.D.</td>
<td>Determining the presence of and functional significance of dopamine receptors in the ductus arteriosus (DA) during development</td>
</tr>
<tr>
<td>Chanelle Hunter</td>
<td>Julie Sterling, Ph.D.</td>
<td>Characterization of receptor expression and aberrant Gli2 signaling in osteosarcoma cells</td>
</tr>
<tr>
<td>Caroline McLaughlin</td>
<td>Eric Delpire, Ph.D.</td>
<td>Mechanism of KS-WNK1 activation of sodium transport in oocytes</td>
</tr>
<tr>
<td>Leah S. Rowe</td>
<td>Sean Davies, Ph.D.</td>
<td>Effects of isolevuglandin, a highly reactive lipid dicarbonyl, on modifying apolipoprotein A-1 and phosphatidylethanolamine in synthetic high-density lipoprotein</td>
</tr>
</tbody>
</table>

Supported by VI4 Summer Scholarship

<table>
<thead>
<tr>
<th>Name</th>
<th>Host Laboratory</th>
<th>Research Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Lindsay Castellanos</td>
<td>Carlos Henrique Serezani, Ph.D.</td>
<td>Examination of the effects of hyperglycemia on inflammasome activation</td>
</tr>
<tr>
<td>Eliot TC Forster-Benson</td>
<td>Charles Sanders, Ph.D.</td>
<td>Characterizing the Native Structure of the HIV-1 gp41 Cytoplasmic Tail and Its Interactions with the Gag Matrix Protein</td>
</tr>
<tr>
<td>Myriam Shehata</td>
<td>John Karijolich, Ph.D.</td>
<td>Probing novel mechanisms of nucleic acid sensing in innate immunity</td>
</tr>
<tr>
<td>Lorryaya Louise Williams</td>
<td>Michael Noto, Ph.D., M.D.</td>
<td>Pilus-expressing acinetobacter baumannii, mediated enhanced bacterial clearance involving inflammasomes signaling</td>
</tr>
</tbody>
</table>

The VSSA-sponsored 16th Annual Student Research Symposium, held on the 2nd day of August, 2018, was the grand finale of the summer undergraduate research program. All thirteen VI4 Summer Scholars presented a poster describing their summer research work. This event was attended by a large Vanderbilt community of undergraduate and graduate students, postdoctoral fellows and faculty. The ensuing pages contain a brief description of summer research activities of each student and their poster presentation.
THE ROLE OF PAX3 IN THE DEVELOPMENT AND DIFFERENTIATION OF PELVIC GANGLIA

Meagan Branch
Elon University
Vascular Biology-Short Term Training Program for Minority Students

Michells Southard-Smith, Ph.D.
Department of Medicine

Summary
- The hypothesis that spina bifida (SB) mouse exhibit alterations in bladder innervation due to developmental deficits in pelvic ganglia.
- SB mouse exhibited significant changes in composition of pelvic ganglia neuronal subtypes, particularly those marked by CGRP.
- This finding suggests that changes in bladder innervation of SB mice are due in part to alterations within pelvic ganglia.
REGULATION OF INTEGRIN EXPRESSION AND SIGNALING BY GLI2 IN TUMOR-INDUCED BONE DISEASE

Karyssa Yvonne Clark
Illinois Wesleyan University
Vascular Biology-Short Term Training Program for Minority Students

Julie Sterling, Ph.D.
Department of Bone Biology

Summary

- The transcription factor Gli2 controls integrin expression and signaling in metastatic breast cancer cells to promote tumor-induced bone disease.
- Gene expression of integrin beta 1 and 5 decreased with Gli2 overexpression while beta 3 increased. No changes were observed at the protein level.
- Gli2 controls integrin expression at the transcription level but does not appear to impact integrin protein expression or signaling.
ASSESSMENT OF BK VIRUS REPLICATION IN CELLULAR COMPONENTS OF THE HUMAN GLOMERULAR VASCULAR UNIT: IMPLICATIONS FOR BK VIRUS ASSOCIATED NEPHROPATHY

Noyna Francheska Fabre
Hunter college
Vascular Biology-Short Term Training Program for Minority Students

Donald Alcendor, Ph.D.
Department of Microbiology, Immunology, and Physiology

Summary

- Latent BK polyomavirus reactivates in immunosuppressed transplant patients yet the effect of BKV infection of glomerular vascular unit remains unexplored.
- Infection induced IFN-γ and CXCL10 in the glomerular vascular unit but cytopathology only in podocytes and glomerular endothelial cells and not mesangium.
- BKV infection may contribute to glomerular inflammation and cytopathology observed in BKV-associated nephropathy amongst renal transplant patients.
A GLUCAGON-LIKE PEPTIDE-1 RECEPTOR VARIANT CONTRIBUTES TO CARDIOPROTECTION

Rachel Alicia Francis
Sewanee: The University of the South
Vascular Biology-Short Term Training Program for Minority Students

Kevin Niswender, M.D., Ph.D
Department of Diabetes, Endocrinology, & Metabolism

Summary
- Identify if signaling bias occurs with a missense variant (A316T) of the GLP1R gene that is associated with reduced risk of coronary artery disease.
- The signaling of the GLP1R A316T variant promotes greater antioxidant capacity than the reference GLP1R.
- The unique signaling properties of the cardio-protective GLP1R A316T variant promotes an antioxidant defense.
DOPAMINE REGULATION VIA ALLOSTERIC MODULATION OF THE M1 RECEPTOR: IMPLICATIONS FOR THE NEGATIVE SYMPTOMS OF SCHIZOPHRENIA

Jordan Galbraith
Vanderbilt University
Vascular Biology-Short Term Training Program for Minority Students

Jeffrey Conn, Ph. D.
Department of Pharmacology

Summary
- My project addressed how activation of the M1 receptor controls dopamine neurotransmission and subsequent motivated behavior.
- I discovered that activation of the M1 receptor by the allosteric modulator agonist increases dopamine (DA) release through activation of protein kinase C.
- These findings suggest that the M1 receptor may be efficacious for the treatment of motivational.
DETERMINING THE PRESENCE OF AND FUNCTIONAL SIGNIFICANCE OF DOPAMINE RECEPTORS IN THE DUCTUS ARTERIOSUS DURING DEVELOPMENT

Micah Harris
Wright State University
Vascular Biology-Short Term Training Program for Minority Students

Jeff Reese, M.D.
Department of Pediatrics

Summary

• The hypothesis that Fenoldopam, a selective D1 dopamine receptor agonist, inhibits ductus arteriosus tone and prevents its postnatal closure, was tested.
• I found that Fenoldopam delivered in vivo did not prevent natural closure of the DA after birth.
• Hence, studies to evaluate Fenoldopam treatment of preterm newborns who are about to receive NSAID treatment for a patent ductus arteriosus are warranted.
CHARACTERIZATION OF RECEPTOR EXPRESSION AND ABERRANT GLI2 SIGNALING IN OSTEOSARCOMA CELLS

Chanelle Hunter
University of Central Florida
Vascular Biology-Short Term Training Program for Minority Students

Julie Sterling, Ph.D.
Vanderbilt Center for Bone Biology (Department of Medicine and Division of Clinical Pharmacology)

Summary
- Exploring signaling regulation in osteosarcomas to find common targets within a variety of tumor samples (varying activating mutations, etc).
- The transcription factor Gli2 was overexpressed in all of the bone sarcoma cells investigated regardless of other mutations present.
- Hence, Gli2 is a potential therapeutic target for osteosarcoma patients with a wide variability in genomic mutations.
MECHANISM OF KS-WNK1 ACTIVATION OF SODIUM TRANSPORT IN OOCYTES

Caroline McLaughlin
Emory University
Vascular Biology-Short Term Training Program for Minority Students

Eric Delpire, Ph.D
Department of Anesthesiology

Summary

• Despite lacking kinase activity, the kidney-specific isoform With-No-Lysine Kinase-1 (KS-WNK1) activates Na+ transporters in Xenopus laevis oocytes.

• All 4 WNK as well as OSR1 and SPAK kinases are expressed in oocytes; and mutations in SPAK-WNK binding or WNK interaction motif affects activation.

• The physiological role of KS-WNK in the distal convoluted tubule is unknown, but it may play a role in Na+ transport function by acting on other kinases.
EFFECTS OF ISOLEVUGLANDIN, A HIGHLY REACTIVE LIPID DICARBONYL, ON MODIFYING APOLIPOPROTEIN A-1 AND PHOSPHATIDYLETHANOLAMINE IN SYNTHETIC HIGH-DENSITY LIPOPROTEIN

Leah S. Rowe
University of Arkansas at Pine Bluff
Vascular Biology-Short Term Training Program for Minority Students

Sean Davies, Ph.D.
Department of Pharmacology

Summary

- Modification of HDL by isolevuglandins (IsoLG) induces pro-inflammatory phenotype in macrophages, but the mechanism remains unknown.
- Recombinant HDL prepared with IsoLG-PE (phosphatidylethanolamine) induced a proinflammatory phenotype but HDL containing ApoA1 was dysfunctional.
- These results suggest that IsoLG-modified PE is pro-inflammatory and, thereby, may underlie the atherogenicity of modified HDL.
EXAMINATION OF THE EFFECTS OF HYPERGLYCEMIA ON INFLAMMASOME ACTIVATION

Sydney Lindsay Castellanos
Indiana University - Bloomington
Vanderbilt Institute of Infection, Immunology and Inflammation

Carlos Henrique Serezani, Ph.D.
Department of Medicine

Summary
- To understand how the immune system works under diabetic conditions, we asked whether glucose threshold impacts inflammasome activation in macrophages.
- We observed that high glucose enhances the expression of inflammasome components, yet did not enhance inflammasome assembly and activation.
- From this observation, we predict that inflammasome activation has very little role in inflammation that is induced by high glucose in diabetic patients.
CHARACTERIZING THE NATIVE STRUCTURE OF THE HIV-1 GP41 CYTOPLASMIC TAIL AND ITS INTERACTIONS WITH THE GAG MATRIX PROTEIN

Eliot TC Forster-Benson
Vanderbilt University
Vanderbilt Institute of Infection, Immunology and Inflammation

Charles Sanders, Ph.D.
Department of Biochemistry

- The biochemical and structural bases for HIV matrix (MA) and viral gp41 interactions are not known.
- NMR spectroscopy experiments revealed that the cytosolic tail of gp41 is largely unstructured whose tail appears to bind directly to MA.
- Our findings unveil a new target for the design of new anti-HIV agents.
PROBING NOVEL MECHANISMS OF NUCLEIC ACID SENSING IN INNATE IMMUNITY

Myriam Shehata
Vanderbilt University
Vanderbilt Institute of Infection, Immunology and Inflammation

John Karijolich, Ph.D.
Department of Pathology, Microbiology, and Immunology

Summary
- The goal was to determine whether MDA5 activates STAT1 indirectly even in the absence of interferon B (IFNb) production.
- In the absence of an activating ligand, MDA5 induces very little, if any, IFNb production, yet STAT1 activation remains unabated.
- Hence, MDA5 does not activate STAT1 indirectly of IFN production.
PILUS-EXPRESSING ACINETOBACTER BAUMANNII, MEDIATED ENHANCED BACTERIAL CLEARANCE INVOLVING INFLAMMASOMES SIGNALING

Lorryya Louise Williams
Calvin College
Vanderbilt Institute of Infection, Immunology and Inflammation

Michael Noto, Ph.D. M.D.
Department of Pathology, Microbiology, and Immunology

Summary
- Pilus-expressing A. baumannii differentially activates innate immune system but the differentially activated pathway is not known.
- Bone-marrow derived macrophages and dendritic cells infected with pilus-expressing A. baumannii exhibit a caspase-1-dependent increase in IL-1β.
- Increased production of IL-1β by cells infected with pilus-expressing A. baumannii suggests a role for inflammasome activation.