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This pilot study aims to explore the 
potential of utilizing privacy-preserving 
techniques for safely collecting and 
sharing human voice data from patients 
for automatic assessment of voice 
disorders and respiratory diseases.

1. Sharing voice data from patients with 
voice disorders/diseases is beneficial.

2. Lack of voice data sharing in clinical 
settings due to privacy concerns.

3. Anonymization techniques for human 
voice data could be used in this case.

1. A subsect of the LibriSpeech dataset: 
363 hours, 921 speakers.

2. Saarbruecken Voice Database: 2000 
German-speaking individuals.

3. A dataset from Eye, Ear, Nose and Throat 
Hospital of Fudan University: 461 people.
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OBJECTIVES
1. Evaluate the privacy risks of sharing 

voice data from patients
2. Propose and examine privacy-enhancing 

techniques for voice data sharing
3. Optimize the utility-privacy tradeoff
4. Explore the fairness and the explainability

1. The privacy-preserving human voice data sharing for clinical decision support is an explorable research direction.
2. Anonymization can be a promising approach to sharing more data while protecting the privacy of patients.
3. Sharing voice data from patients with disorders/diseases might be more challenging than sharing voices from other individuals.
4. Finding the perfect balance between utility and privacy is essential while achieving the model’s explainability and fairness.

METHODS – System Overview METHODS – Anonymization Model METHODS – Learning Model 

CONCLUSIONS & DISCUSSION

An overview of the privacy-preserving voice data sharing system
GAN: generative adversarial network. DNN: deep neural network. DSP: digital signal processing.

A DNN-based anonymization model for human voice data
F0: fundamental frequency. ASR: automatic speech recognition. AM: acoustic model. BN: bottleneck. X-
vector: DNN embeddings. DNN: deep neural network. GAN: generative adversarial network. NSF: neural 
source-filter. A learning model for dysphonia detection

MFCC: Mel-frequency cepstral coefficients. 
CNN: convolutional neural network.
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