Epidemiology, Treatment and Prevention of MDR-TB

C. Robert Horsburgh, Jr.
Boston University School of Public Health
Objectives

• To document the extent of the global MDR-TB epidemic and suggest where it is headed

• To describe the drugs available for MDR-TB treatment and define their toxicities

• To provide guidance on using these drugs together in combination regimens

• To review potential strategies for prevention of MDR-TB and outline research needs
Outline

• What is MDR-TB and why does it threaten global TB control?
• Improving diagnosis of MDR-TB
• Improving treatment of MDR-TB
• New Drugs for MDR-TB treatment
• Prevention of MDR-TB
Multidrug-Resistant TB (MDR-TB)
Tuberculosis disease caused by *M. tuberculosis* resistant to Isoniazid and Rifampin (+/- other drugs)
FIGURE 4.1

Global coverage of surveillance data on drug resistance, 1994–2015

2015 Global TB Report
MDR-TB Diagnostic Trends Over Time

![Graph showing percentage of cases over time](image)

Percentage of cases (%)

2015 Global TB Report
MDR-TB Epidemiology

- Estimated 480,000 new cases last year
- Created by inappropriate treatment, interruption of drug supply and patient nonadherence
- Main mechanism is selection of naturally occurring mutations
- No evidence of transposition with other bacteria
- Also can be primary spread
FIGURE 4.2
Percentage of new TB cases with MDR-TB

2015 Global TB Report
FIGURE 4.8

Number of patients with laboratory–confirmed XDR–TB started on treatment in 2014

2015 Global TB Report
Trends Over Time in MDR-TB Treatment

2015 Global TB Report
MDR-TB Treatment Outcomes, 2007-12
Emergence of Additional DR on MDR-TB Treatment

- Cohort study of 832 patients with MDR-TB treated with WHO recommended regimens

- Of those without baseline resistance to specific SLDs:
 - 79 (11.2%) acquired fluoroquinolone (FQ) resistance
 - 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs)
 - 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis

Clin Infect Dis 2014;59:1049
FIGURE 5.8

Number of patients with laboratory-confirmed XDR-TB started on treatment in 2013

2014 Global TB Report
Annual Incident Global MDR-TB

Number of Persons (x105)

- New TB
- Diagnosed
- Cures
Can we Improve MDR-TB Diagnosis?
WHO Endorses GeneXpert MTB/RIF
December 2010

• Xpert MTB/RIF-molecular test, detects TB and rifampin resistance directly from sputum

• Provides diagnosis in < 2 hours

• Sensitivity
 – sm-pos: 98% (95% CI: 97%-99%)
 – sm-neg: 68% (95% CI: 61%-74%)
 – HIV-pos: 79% (95% CI: 70%-86%)
 – RIF-R: 95% (95% CI: 90%-97%)
WHO MDR-TB Treatment Recommendations

• 4 second-line antituberculosis drugs likely to be effective as well as PZA, should be included in the intensive phase

• 3rd generation FQ, ETO, CS preferred over PAS

• Intensive phase 8 months

• Drop injectable after intensive phase

• Total duration 20 months or 12 months after culture conversion

WHO MDR-TB Treatment Guidelines, 2011
Can we Improve MDR-TB Treatment Success?
Old and Repurposed Drugs for MDR-TB Treatment

- PZA
- Fluoroquinolones
- Clofazimine
- Linezolid
- Meropenem + Clavulanic acid
Pyrazinamide for MDR-TB

• Shortens duration of DS-TB therapy
• Synergistic with new and repurposed drugs in murine models
• Substantial hepatotoxicity
• 40-60% of MDR-TB isolates are resistant to PZA
“Third Generation” Fluoroquinolones

- Levofloxacin, Moxifloxacin and Gatifloxacin
- Gatifloxacin not widely available
- Moxifloxacin causes QT prolongation
- Optimal doses of Levofloxacin and Moxifloxacin for TB remain to be determined
- Global resistance to Levo and Moxi ~ 0-9% of MDR-TB
A 9-month regimen for MDR-TB in Bangladesh

4-month intensive phase prolonged if still smear-positive after 4 months

Fixed 5-month continuation phase

AJRCCM 2010:182:684-92
Bangladesh Regimen: Efficacy

515 patients

- 435 Cures/completions (84.5%)
- 29 Deaths (5.6%)
- 40 Defaults (7.8%)
- 7 Failures (1.4%)
- 4 Relapses (0.8%)

IJTLD 2014:18:1180-8
Bangladesh Regimen: Tolerability

515 patients

- 111 Vomiting (21.6%)
- 8 Diabetes/glycosuria (1.5%)
- 50% completion in 9m; 95% in 12m
- Risk factors for failure: FQ or PZA resistance

IJTLD 2014:18:1180-8
STREAM Study

• Description: Modified Bangladesh regimen (with moxifloxacin in place of gatifloxacin) compared to “standard” MDR-TB regimen
• Regimens: 7-drug regimen (9 months)
 4-5 drugs (18-24 months)
• Sponsors: IUATLD, USAID
• Target population: smear+ MDR-TB, adults
• Outcome: Failure, relapse, default or death
• Size: 400 patients – 100% enrolled
• Sites: Ethiopia, Vietnam, South Africa
• Expected completion: 2017
Tolerability of Clofazimine

- Skin discoloration (75-100%)
- Gastrointestinal intolerance (40-50%)
- Eosinophilic enteritis
- Interstitial nephritis
- Rash, dry skin, ichthyosis
- QT prolongation
Clofazimine in TB Treatment

• Use for treatment of Leprosy since 1969
• Effective against *M. tuberculosis* in murine studies
• Early trials of use against TB were not successful
• Little activity in EBA study (days 1-14)
• Part of the “Bangladesh” regimen for MDR-TB
• Persists in tissues for 6-12 months after being given
Clofazimine in MDR-TB Treatment

105 patients randomized to OBT+CFZ vs. OBT+Placebo

Clin Infect Dis 2015;60:1361
Clofazimine Trial – Phase 3

• Description: WHO standard regimen +/- Clofazimine
• Regimens: WHO Standard + CFZ$_{200/100}$ (20-24 months)
 WHO Standard + Placebo (20-24 months)
• Sponsor: Novartis
• Target population: Xpert+ MDR-TB, adults, +/-HIV
• Outcomes: Time to negative sputum culture, cure, relapse
• Size: 380 patients
• Sites: Global
• Expected results: 2020
Prospective Study of Linezolid in XDR-TB Treatment

- 40 patients with XDR-TB in Korea
- Randomized to 300mg qd or 600mg qd
- Further randomized to immediate versus 2 month delayed linezolid (both with OBR)
- 36/40 converted sputum cultures (mean 90 days)
- 4 failures were all resistant to linezolid

NEJM 2012;367:1508-18
Linezolid in the Treatment of XDR-TB

A Culture Conversion in Solid Medium

Cumulative Probability of Conversion

Days since Randomization

NEJM 2012;367:1508-18
Tolerability of Linezolid in 72 Patients with MDR-TB*

- Peripheral neuropathy (40%)
- Anemia (25%)
- Optic Neuritis (10%)
- Thrombocytopenia (10%)
- GI disorders (8%)
- Neutropenia (2%)

*Dose ≤ 600mg/day

Eur Resp J 2012;40:1437
Meropenem/Clavulinate

- Drug class: Carbapenem (beta-lactam)
- Mode of action: bacterial wall synthesis inhibitor; needs to be given with oral clavulanic acid
- Half life: 1 hour; renal excretion
- Toxicities: headache, diarrhea, nausea, thrombophlebitis
- Chemical Structure:
Observed means of $\log_{10}\text{CFU}$
Efficacy and Tolerability of Meropenem

- 37 patients received meropenem 1 gm I.V. tid with clavulanate (125 mg p.o. tid) plus OBT including linezolid
- 61 comparison patients received OBT, most including linezolid
- Sputum-culture conversion in 31/37 (83.8%) versus 15/24 (62.5%) controls ($p=0.06$)
- 5/37 (13.5%) experienced diarrhea potentially attributed to meropenem–clavulanate
- Two of the five also experienced transient increased liver function tests

Eur J Resp Dis 2013;41:1386
New Drugs for MDR-TB Treatment
Global TB Drug Pipeline

Preclinical Development
- CPZEN-45
- SQ641
- SQ609
- Q203
- DC-159a
- TBI-166
- PBTZ169
- TBA-354

Clinical Development
- **Phase I**
 - Pretomanid
 - Bedaquiline*
- **Phase II**
 - Gatifloxacin
 - Moxifloxacin
 - Rifapentine
- **Phase III**
 - Delamanid*

Concepts or candidate drugs to which NIAID has contributed support at some point in development

Undergoing continued clinical testing to secure full licensure

Updated June 2014. Adapted from Stop TB Partnership [http://www.newtbdrugs.org], June 2013.
Bedaquiline (TMC-207)

- Drug class: diarylquinolone
- Mode of action: inhibits proton pump for ATP synthase
- Half life: 24 hours
- Toxicities: Nausea, QT prolongation
- Chemical Structure:
Bedaquiline Phase 2 Study

- Description: Addition of Bedaquiline to OBT for 6 months, followed by OBT for 18 months
- Regimens: OBT+Bedaquiline
 OBT+Placebo
- Sponsor: Janssen
- Target population: newly-diagnosed, smear+ MDR-TB, adults, CD4>300 if HIV+
- Outcome: Time to sputum culture conversion
- Size: 200 patients
Bedaquiline Phase 2 Study
Time to sputum culture conversion

![Graph showing time to culture conversion for Bedaquiline and Placebo groups.](image-url)

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Bedaquiline</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. at Risk

NEJM 2014;371:730
Bedaquiline Phase 2 Study
Final results

<table>
<thead>
<tr>
<th></th>
<th>Bedaquiline+OBT</th>
<th>Placebo+OBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>79 patients</td>
<td>81 patients</td>
</tr>
<tr>
<td>Median Conversion</td>
<td>12 weeks</td>
<td>18 Weeks*</td>
</tr>
<tr>
<td>“Cure” at week 120</td>
<td>58%</td>
<td>32%*</td>
</tr>
<tr>
<td>Serious Adverse Events</td>
<td>23%</td>
<td>19%</td>
</tr>
</tbody>
</table>

*p<0.01

NEJM 2014;371:723-32
Tolerability of Bedaquiline

- QT prolongation: +15.4 msec in BDQ vs. +3.3 msec in Placebo
- Increased death at 120 weeks: 10/79 (13%) in BDQ vs. 2/81 (2%) in Placebo
- No other differences between BDQ and Placebo

NEJM 2014;371:730
WHO Bedaquiline Recommendations

• Use for patients with MDR-TB where isolate is resistant to FQ or injectable (or both)
• May also use if patient is intolerant of FQ or injectable
• Give only for first 6 months of regimen
• Continue other drugs for total of 20 months
• Do not use with delamanid

WHO Bedaquiline Recommendations, 2012
Countries that had used bedaquiline for the treatment of M/XDR-TB as part of expanded access, compassionate use or under normal programmatic conditions by the end of 2014.
Delamanid (OPC-67683)

- Drug class: nitroimidazo-oxazole
- Mode of action: mycolic acid synthesis inhibitor
- Half life: 20-30 hours
- Toxicities: Nausea, QT prolongation
- Chemical Structure:
Delamanid Phase 2 Study

- Description: Addition of Delamanid (D) to OBT
- Regimens: OBT+D 100 mg bid
 OBT+D 200mg bid
 OBT+Placebo
- Target population: Adults with pulmonary MDR-TB, CD4>350 if HIV+
- Outcome: Sputum conversion at 8 weeks
- Size: 430 patients
Figure 2. Proportion of Patients with Sputum-Culture Conversion by Day 57.
Tolerability of Delamanid

- Increases in QTcF from baseline were 7.6 ms at 1 month and 12.1 ms at 2 months
- 3% of patients experienced an increase of 60 ms or greater
- 1 patient exhibited a QTcF interval > 500 ms
- No cases of Torsades de Pointes

NEJM 2012;366:2157
WHO Delamanid Recommendations

• Use for patients with MDR-TB where isolate is resistant to FQ or injectable (or both)
• May also use if patient is intolerant of FQ or injectable
• Give only for first 6 months of regimen
• Continue other drugs for total of 20 months
• Do not use with bedaquiline

WHO Delamanid Recommendations, 2014
Pretomanid (PA-824)

- Drug class: nitroimidazo-oxazine
- Mode of action: mycolic acid synthesis inhibitor
- Half life: 16-20 hours
- Toxicities: QT prolongation?
- Chemical Structure:
Pretomanid/Moxi/PZA Regimen

Lancet March 18, 2015
MDR-TB Clinical Trials in Progress

• Delamanid - Phase 3
• Opti-Q – Phase 2 (Opti-Q)
• Pretomanid – Phase 3 (STAND)
• Pretomanid+Bedaquiline – Phase 2 (NC-005)
• Pretomanid+Bedaquiline – Phase 3 (NiX-TB)
• NEXT Trial – Phase 3 (BDQ+ oral OBT)
Constructing a new MDR-TB Regimen: Principles

- At least 3 new drug classes
- Avoid overlapping toxicities
- Strive for all-oral regimen
- Estimate duration based on 2 month sputum culture conversion
MDR-TB Drug Menu

Class

Diarylquinolone: bedaquiline

Nitroimidazole: delamanid, PA-824

Oxazolidinone: linezolid, sutezolid?, others?

Fluoroquinolone: levofloxacin, moxifloxacin, (gatifloxacin)

Riminophenazine: clofazimine

Other: PZA
MDR-TB Clinical Trials in Preparation

- STREAM Stage 2: 6 and 9-month BDQ regimens
- ACTG 5343: Bedaquiline/Delamanid DDI
- MDR-END: 9-month DLM+LZD+LFX+PZA Regimen
- TB-PRACTECAL: PRT+BDQ+LZD+PZA
- EndTB: BDQ, DLM and Combinations
- ACTG 5356: LZD dose optimization with DLM
MDR-TB Prevention

• Ensure that treatment of DS-TB is completed to prevent emergence of DR

• Find and promptly treat MDR-TB cases to reduce primary spread in the community

• Treatment of contacts with MDR-TB?
MDR-TB Household Contact Studies in Preparation

- V-QUIN (levofloxacin)
- TB-CHAMP (levofloxacin)
- Phoenix (delamanid)
Conclusions

- New TB drug classes may increase MDR-TB treatment responses, shorten treatment duration and decrease mortality.

- Tolerability of a number of the new and repurposed agents remains to be defined, especially when used in combination.

- Combination studies are underway to assess DDI between new agents, other TB drugs and ART.
To follow developments in MDR-TB diagnosis and treatment:

RESIST-TB Website

www.resisttb.org