Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis.

Abstract

One issue of great concern for the scientific community is the continuing loss of diverse amphibian species on a global scale. Amphibian populations around the world are experiencing serious losses due to the chytrid fungus, Batrachochytrium dendrobatidis. This pathogen colonizes the skin, leading to the disruption of ionic balance and eventual cardiac arrest. In many species, antimicrobial peptides secreted into the mucus are thought to contribute to protection against colonization by skin pathogens. Although it is generally thought that antimicrobial peptides are an important component of innate immune defenses against B. dendrobatidis, much of the current evidence relies on correlations between effective antimicrobial peptide defenses and species survival. There have been few studies to directly demonstrate that antimicrobial peptides play a role. Using the northern leopard frog, Rana pipiens, we show here that injection of noradrenaline (norepinephrine) brings about a long-term depletion of skin peptides (initial concentrations do not recover until after day 56). When peptide stores recovered, the renewed peptides were similar in composition to the initial peptides as determined by MALDI-TOF mass spectrometry and in activity against B. dendrobatidis as determined by growth inhibition assays. Newly metamorphosed froglets depleted of their peptide stores and exposed to B. dendrobatidis died more rapidly than B. dendrobatidis-exposed froglets with their peptides intact. Thus, antimicrobial peptides in the skin mucus appear to provide some resistance to B. dendrobatidis infections, and it is important for biologists to recognize that this defense is especially important for newly metamorphosed frogs in which the adaptive immune system is still immature.