Cannabis:

Basic Biology and Implications for Medicine and Mental Health

Sachin Patel MD PhD

James G. Blakemore Professor of Psychiatry and Behavioral Sciences, Molecular Physiology & Biophysics, and Pharmacology Director, Division of General Psychiatry

Disclosures

- Research Contract H. Lundbeck A/S
- Scientific consultant for Psy Therapeutics

Outline

- Cannabis, cannabinoids and endocannabinoid
- Medical Cannabis Introduction
- Cannabis and Pain
- Cannabidiol and Epilepsy
- Cannabis Adverse Effects
- Problem Cannabis Use
- Cannabis and Mental Health Outcomes: focus on Schizophrenia

The Basics

Natural

VS.

Synthetic

JWH 073

Marijuana, hashish

Cannabinoids

Cannabinoids

Endogenous cannabinoids

Anandamide (AEA)

2-arachidonoylglycerol (2-AG)

Cannabinoid Receptors

Pisanti et al. (2013) TIPS

Cannabinoid Receptors

CB1 receptor desensitization in humans

Hirvonen et al. 2012

Synaptic Effects of Cannabinoids

Medical Cannabis: What, Where, Why and How

What

FDA-APPROVED CANNABINOID MEDICATIONS IN THE UNITED STATES

SYNTHETICALLY DERIVED MEDICATIONS

Marinol (pill) and Syndros (solution)	Dronabinol (active ingredient; synthetic THC)	 Indications: Stimulate appetite to counteract weight loss in patients with AIDS or cancer. Mitigate nausea and vomiting associated with chemotherapy.
Cesamet	Nabiolone (active ingredient; chemical structure similar to THC)	 Indications: Mitigate nausea and vomiting associated with chemotherapy.
BOTANICAL EXTR	ACT FROM THE CANNABIS PLA	NT
Epidiolex (solution)	CBD (purified form)	 Indications: Seizures associated with severe forms of epilepsy (Lennox-Gastaut syndrome and Dravet syndrome).

Abbreviations: AIDS, acquired immune deficiency syndrome; CBD, cannabidiol; FDA, US Food and Drug Administration; THC, tetrahydrocannabinol. From US Food and Drug Administration⁵; Orrange S.⁶

Nierengarten (2019), Contemp. Ped.

This report is available to download as a free pdf:

Nationalacademies.org/CannabisHealthEffects

- In adults with chemotherapy induced nausea and vomiting, oral cannabinoids are effective antiemetics.
- In adults with chronic pain, patients who were treated with cannabis or cannabinoids are more likely to experience a clinically significant reduction in pain symptoms
- In adults with multiple sclerosis (MS) related spasticity, short-term use of oral cannabinoids improves patient-reported spasticity symptoms.
- For these conditions the effects of cannabinoids are modest; for all other conditions evaluated there is inadequate information to assess their effects.

What

Where

Where is Cannabis Legal?

Recreation	nal & Medical		Medi	cal Only	
Alaska	Michigan	Arizona	Hawaii	New Hampshire	Oklahoma
California	Nevada	Arkansas	Louisiana	New Jersey	Pennsylvania
Colorado	Oregon	Connecticut	Maryland	New Mexico	Rhode Island
Illinois	Vermont	Delaware	Minnesota	New York	Utah
Maine	Washington	Florida	Missouri	North Dakota	West Virginia
Massachusetts	Washington, D.C.	lowa	Montana	Ohio	Ū.

This report is available to download as a free pdf:

Nationalacademies.org/CannabisHealthEffects

This report is available to download as a free pdf: Nationalacademies.org/CannabisHealthEffects

How

Table 2 Differences between inhaled and oral cannabinoid administration

Characteristics	Inhaled	Oral
THC and CBD concentrations in available products sold in Canada	THC: <1-30%; CBD: <1-20%	THC: <1-30 mg/mL (maximum concentration); CBD: <1-25 mg/mL or more (no maximum concentration)
Titration characteristics	Quick titration	Lengthier titration
Ease of dosing	More challenging with higher potency strains	More precise with standardized preparations (oils, tinctures)
average bioavailability of THC	10–25%	10% (variable 6–20%)
Active metabolites	∆9-THC > 11-OH-THC	Δ9-THC < 11-OH-THC
Psychoactivity	THC-mediated	THC-mediated*
First onset of effects	3-10 minutes	60–90 minutes
Peak concentration	2-10 minutes	1–3 hours
Peak psychoactive effects: euphoria, depersonalization, sensory perceptions	15 minutes	3 hours
Peak cognitive effects: short-term memory, attention, concentration	15 minutes	5 hours
Duration of effects	2–4 hours	8–12 hours or more
Dosing frequency	5–6/day	1–3/day

*, 11-OH THC may be more psychoactive than Δ 9 THC.

Cannabis and Pain

Cannabis and Pain in Human Experimental Studies

Both smoked marijuana and oral THC reduce pain sensation in a CPT laboratory pain model

Cooper et al. (2013). NPP

Cannabis and Pain in Human Experimental Studies

Only smoked active marijuana resulted in significant "high" sensation

Cooper et al. (2013). NPP

Chronic Pain

Improvement in Pain With	Canna	binoid Events	Place	bo Events	Odds Ratio	Favors	Favors	
Cannabinoid vs Placebo by Study	No.	Total No.	No.	Total No.	(95% CI)	Placebo	Cannabinoid	Weight, %
Tetrahydrocannabinol (smoked)								
Abrams et al, ⁷⁷ 2007	13	25	6	25	3.43 (1.03-11.48)			6.51
Nabiximols								
GW Pharmaceuticals, ²² 2005	54	149	59	148	0.86 (0.54-1.37)			19.02
Johnson et al, ⁶⁹ 2010	23	53	12	56	2.81 (1.22-6.50)			10.87
Langford et al, ⁶⁵ 2013	84	167	77	172	1.25 (0.81-1.91)			20.19
Nurmikko et al, ⁷⁶ 2007	16	63	9	62	2.00 (0.81-4.96)			9.84
Portenoy et al, ⁶⁷ 2012	22	90	24	91	0.90 (0.46-1.76)			14.04
Selvarajah et al, ⁷⁰ 2010	8	15	9	14	0.63 (0.14-2.82)	←		4.63
Serpell et al, ⁸⁸ 2014	34	123	19	117	1.97 (1.05-3.70)			14.91
Subtotal 1 ² = 44.5%, (P = .0.94)	241	660	209	660	1.32 (0.94-1.86)	•		93.49
Overall $l^2 = 47.6\%$, ($P = .0.64$)	254	685	215	685	1.41 (0.99-2.00)		\checkmark	100.00
						· · · · · · · · · ·		
						0.2 1	.0 10	
						Odds	Ratio (95% CI)	

There was moderate-quality evidence to support the use of cannabinoids for the treatment of chronic pain and spasticity

Whiting et al. (2015), JAMA

Pain Type	Studies	Findings	Strength of Evidence*	Comments
Neuropathic	 11 low-ROB studies; combined N = 593: 4 of smoked THC (28, 31, 33, 39); combined N = 150 3 of vaporized THC (36, 40, 47); combined N = 97 3 of nabiximols (24, 27, 42); combined N = 312 1 of oromucosal spray delivering THC or THC+CBD (43); N = 34 1 unclear-ROB study of nabiximols (26); N = 30 1 high-ROB trial (35); N = 125 	Studies did not find a clinically significant between-group difference on continuous pain scales, but a higher proportion of intervention patients had clinically significant pain relief up to several months later In a meta-analysis of 9 studies, intervention patients were more likely to report \geq 30% improvement in pain (combined RR, 1.43 [95% Cl, 1.16-1.88]; $l^2 = 38.6\%$; $P = 0.111$)	Low	Few patients enrolled in most low-ROB studies; inconsistent results; marked differences among studies in dosing and delivery mechanism; brevity of study duration; low applicability to formulations available in dispensaries
Cancer	2 unclear-ROB trials; combined N = 596; 177-360 per study: 1 of nabiximols (25) 1 of nabiximols and THC oromucosal spray in separate groups (23) 1 high-ROB trial of THC capsules (34), N = 10	No consistent clinically significant effects on pain	Insufficient	Small number of studies; methodological flaws, including high attrition, lack of clarity about randomization and blinding procedures, and use of nonstandard outcome measures

Table 2. Summary of Evidence of the Benefits of Cannabis in Populations With Chronic Pain

From: The Effects of Cannabis Among Adults With Chronic Pain and an Overview of General HarmsA Systematic Review

Ann Intern Med. 2017;167(5):319-331. doi:10.7326/M17-0155

Pain Type	Studies	Findings	Strength of Evidence*	Comments
Other/mixed	 unclear-ROB trial of nabiximols for rheumatoid arthritis (21); N = 58 high-ROB trial of EPC002A (orally ingested 99% THC) for abdominal pain (46); N = 65 cohort studies of mixed forms of cannabis (smoked, orally ingested, vaporized) for fibromyalgia (48), inflammatory bowel disease/Crohn disease (49), and nociceptive and/or neuropathic pain (50) 	Small improvements in pain	Insufficient	Larger observational study had high attrition

Table 2. Summary of Evidence of the Benefits of Cannabis in Populations With Chronic Pain

From: The Effects of Cannabis Among Adults With Chronic Pain and an Overview of General HarmsA Systematic Review

Ann Intern Med. 2017;167(5):319-331. doi:10.7326/M17-0155

Multiple Sclerosis

Produced and marketed by GW Pharmaceuticals. Approved in the UK for the treatment of pain and spasticity associated with MS

Extracted from pharma grown cannabis in the UK.

Sublingual preparation of THC:CBD in a 1:1 ratio. Also contains >100 trace cannabinoids

Novotna et al. (2015), E. J. Neurol.

Multiple Sclerosis

	Cannabin	oid	Placebo						
Score Change With Cannabinoid vs Placebo by Study	No. of Patients	Mean (SD) Score Change	No. of Patients	Mean (SD) Score Change	Mean Difference (95% CI)		Favors Cannabinoid	Favors Placebo	Weight, %
Nabiximols							1		
Collin, ¹²⁵ 2010	156	-3.3 (9.25)	160	-2.8 (7.81)	-0.50 (-2.39 to 1.39)	<			— 0.43
Collin, ¹²⁷ 2007	114	64 (.56)	63	53 (.58)	-0.11 (-0.29 to 0.07)				49.11
Wade, ¹²⁹ 2004	73	37 (2.51)	70	59 (2.04)	0.22 (-0.53 to 0.97)				2.73
Berman, ⁸⁷ 2007	40	13 (.43)	44	01 (.42)	-0.12 (-0.30 to 0.06)				46.03
Subtotal $I^2 = 0.0\%$, ($P = .0.82$)	383		337		-0.11 (-0.23 to 0.02)				98.30
Dronabinol									
Zajicek, ¹³¹ 2003	197	-1.86 (7.95)	207	92 (6.56)	-0.94 (-2.37 to 0.49)	<			0.75
Tetrahydrocannabinol/cannabidiol									
Zajicek, ¹³¹ 2003	207	-1.24 (6.6)	207	92 (6.56)	-0.32 (-1.59 to 0.95)	-			0.95
Overall <i>I</i> ² =0.0%, (<i>P</i> =.80)	590		544		-0.12 (-0.24 to 0.01)		-	*	100.00
						-2	-1 (D 1	2

Mean Difference (95% CI)

Whiting et al. (2015), JAMA

Cannabidiol and Epilepsy

Cannabidiol and Epilepsy

20 mg/kg

A randomised, double-blind, placebo-controlled, phase 3 trial at 24 clinical sites in the USA (n=17), the Netherlands (n=1), and Poland (n=6). Eligible patients were aged between 2 and 55 years, with a clinical diagnosis of <u>Lennox-Gastaut</u> <u>syndrome</u>

Thiele et al. (2018), The Lancet

Cannabidiol and Epilepsy

Combined patient and caregiver GIC response catagory

Thiele et al. (2018), The Lancet

Adverse Effects and Problemed Use

Outcome	Studies	Findings	Strength of Evidence*	Comments
General AEs	2 systematic reviews (10, 11) and 1 observational study of chronic pain (50)	Cannabis-based treatments associated with higher overall risk for short-term, nonserious AEs.	-	Consistent findings except for serious AE
Motor vehicle accidents	Meta-analysis (51) of 21 observational studies; combined N = 239 739	Increase in collision risk (OR, 1.35 [95% CI, 1.15-1.61]).	Moderate	Small but significant increase in risk seen consistently across numerous sensitivity analyses and after adjustment in meta-regression analyses
Pulmonary function	2 low-ROB prospective cohort studies (52, 53) with 20-32 y follow-up; combined N = 6053 1 systematic review (54) of 5 observational studies (3 cohort, 2 cross-sectional); combined N = 851	In young adults, low levels of cannabis smoking did not adversely affect lung function over about 20 y A previous meta-analysis of 5 studies found no increased risk for pulmonary adverse effects (OR, 0.80 [95% CI, 0.46-1.39])	Young adults: moderate Older adults: no evidence	2 well-done prospective cohort studies, but limited information about effects of heavy use and no information in older or multimorbid populations
Cardiovascular effects	2 high-ROB observational studies: 1 case-crossover (55), <i>N</i> = 3882; 1 cohort (56), <i>N</i> = 2097	Cannabis use at time of MI not associated with mortality after mean 12.7-y follow-up, but longitudinal use not assessed Risk of MI within 1 h of cannabis use significantly elevated compared with periods of nonuse, but finding may be inflated by recall bias (OR, 4.8 [95% CI, 2.9-9.5])	Insufficient	Recall bias; inadequate controlling for confounders; lack of longitudinal exposure data
Lung cancer	1 patient-level meta-analysis (57) of 6 case-control studies; combined N = 2150 1 high-ROB cohort study (58);	Meta-analysis found no association between light cannabis use and lung cancer	Low	Recall bias; mostly light users, few heavy users; large cohort study had no information about exposure over time

Table 3. Summary of Evidence for the Harms of Cannabis in Chronic Pain and General Adult Populations

From: The Effects of Cannabis Among Adults With Chronic Pain and an Overview of General HarmsA Systematic Review

Ann Intern Med. 2017;167(5):319-331. doi:10.7326/M17-0155

Head/neck/ oral cancer	Meta-analysis (59) of 9 case-control studies; combined N = 5732	No association between cannabis use and cancer (OR, 1.02 [95% Cl, 0.91-1.14]); generally consistent across studies and no evidence of dose-response	Low	Imprecise exposure measurement with potential recall bias; ever-use among studies ranged from 1%-83%
Testicular cancer	Meta-analysis (60) of 3 high-ROB case-control studies; combined N = 719	Increased cancer risk for weekly users compared with never-users seen with nonseminoma cancer but not seminoma cancer (OR, 1.92 [95% CI, 1.35-2.72])	Insufficient	Potential confounding from recall bias and tobacco use
Transitional cell cancer Mental health AEs	1 high-ROB VA case-control study (61); N = 52	Risk of cancer with >40 joint-years cannabis use vs. none (OR, 3.4; unadjusted P = 0.012).	Insufficient	1 very small case-control study with several methodological flaws
Suicidal behaviors	1 meta-analysis (62) of 4 observational studies	Significantly increased odds of suicide with any cannabis use (OR, 2.56 [95% CI, 1.25-5.27])	Insufficient	Inconsistent results; inadequate exposure ascertainment and adjustment for confounding
Mania	1 meta-analysis (63) of 2 prospective studies	Increased incidence of new-onset mania symptoms among populations without diagnosis of bipolar disorder (OR, 2.97 [95% Cl, 1.80-4.90])	Low	Small number of studies; exposure not well-characterized in 1 study, but other was large community-based cohort study also showing dose-response effect
Psychosis	1 systematic review (64) 8 studies (65-71, 74) including patients without psychotic symptoms at baseline: 3 low ROB, 3 medium ROB, 2 high ROB	History of cannabis use associated with increased risk for psychotic symptoms	Low	Consistent evidence from large observational studies and some evidence of increased risk with higher levels of use; consistent with data from small experimental studies suggesting risk of acute psychosis in some patients; magnitude of risk unclear and not specifically studied in chronic pain populations
Cognitive effects	2 systematic reviews (72, 73)	Active long-term cannabis use associated with small negative effects on all aspects of cognition Mixed, inconsistent findings on long-term effects in past users.	Moderate Insufficient (past use)	Consistent data from large number of studies on effects on active long-term use, but inconsistent findings from smaller number of studies regarding effects in those who abstained and no data available specifically in chronic pain populations

From: The Effects of Cannabis Among Adults With Chronic Pain and an Overview of General HarmsA Systematic Review

Ann Intern Med. 2017;167(5):319-331. doi:10.7326/M17-0155

Problem Cannabis Use

- 4.2 million Americans reported experiencing symptoms in the past year that would qualify them for cannabis use disorder.
- Risk factors include:
 - Initiating cannabis use at a young age.
 - Being male and smoking cigarettes.

Greater frequency of cannabis use also increases likelihood of developing problem cannabis use.

Cannabis Withdrawal and Dependence Treatment

Marijuana Withdrawal and Dependence Treatment

Mirtazapine (30 mg/day) and quetiapine (200 mg/day) substantially reversed withdrawal-related disruptions in sleep and food intake, yet did not decrease cannabis relapse in the laboratory, while baclofen (60, 90 mg/day) had little effect on any measure (Haney et al., 2010; Cooper et al., 2012).

Cannabis Use and Mental Health Outcomes

Health Effects of Cannabis and Cannabinoids

Mental Health

- In individuals with schizophrenia and other psychoses, a history of cannabis use may be linked to better performance on learning and memory tasks.
- Cannabis use does not appear to increase the likelihood of developing depression, anxiety, and posttraumatic stress disorder.
- For individuals diagnosed with bipolar disorders, near daily cannabis use may be linked to greater symptoms of bipolar disorder than non-users.
- Heavy cannabis users are more likely to report thoughts of suicide than nonusers.
- Regular cannabis use is likely to increase the risk for developing social anxiety disorder.
- There is substantial evidence of a statistical association between cannabis use and the development of schizophrenia or other psychoses, with the highest risk among the most frequent users.

Public Release

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Cannabis use as a risk factor for schizophrenia

Moore et al., 2007

Cannabis use as a risk factor for schizophrenia

EC (050/ CI)

A. By study design

		20 (00 / 01)
Cohort		
Tien 1990		1.85 (1.33, 2.57)
Zammit 2002		6.20 (4.19, 9.17)
Henquet 2005		5.16 (3.13, 8.50)
Wiles 2006		3.04 (1.41, 6.59)
Zammit 2011		4.36 (2.38, 7.99)
Arseneault 2002		4.29 (1.45, 12.70)
Subtotal		3.83 (2.34, 6.29)
Cross-sectional		
Degenhart 2001		7.45 (3.99, 13.90)
Miettunen 2008	- -	4.67 (3.66, 5.96)
McGrath 2010		1.89 (1.32, 2.69)
GAP data 2012		4.38 (3.30, 5.81)
Subtotal		3.99 (2.50, 6.37)
Overall effect	\diamond	3.90 (2.84, 5.34)
	5 1 2 4 8	16

B. By outcome measure

Marconi et al., 2016

Cannabis use as a risk factor for schizophrenia

Psychosis risk distribution

Marconi et al., 2016

THC use and psychotic symptoms

"The positive symptoms induced by Δ⁹-THC included suspiciousness, paranoid and grandiose delusions, conceptual disorganization, and illusions. It also produced depersonalization, derealization, distorted sensory perceptions, altered body perception, feelings of unreality and extreme slowing of time. Δ⁹-THC produced negative symptoms including blunted affect, reduced rapport, lack of spontaneity, psychomotor retardation, and emotional withdrawal."

---- Placebo (Vehicle) ---- 2.5 mg THC ----- 5 mg THC

THC worsens psychotic symptoms in schizophrenia

Dysregulation in endocannabinoid signaling in schizophrenia

Eggan et al. 2010

Patients with schizophrenia have reduced CB1 receptors in the prefrontal cortex compared to controls and depressed patients

Summary

- Medical and recreational use of cannabis is growing
- Medical professionals should be educated on the biology, efficacy and adverse effects of cannabinoids
- Efficacy of cannabinoids for the treatment of pain is present but weak and has significant limitations in terms of types of cannabis used and length and quality of trials
- Cannabidiol was recently approved for treatment of Seizures
- Physical AEs of cannabis use are limited
- Mental health consequences are present but causal relationships between cannabis use and mental health consequences is very limited