T. Castellano¹, S. Shokouhi¹, A. Rosenberg², M. Dervishi¹, B. Boyd¹, T. Peterson², N. Morton¹, P. Newhouse¹

[¹⁸F]FEOBV PET imaging of the cholinergic neurotransmission system: An early biomarker of Alzheimer's risk

Departments of ¹Psychiatry and Behavioral Sciences and ²Radiology, VUMC

In collaboration with the VUMC Radiochemistry core, we have developed a complete path to the production of a novel PET radiotracer, known as ¹⁸F]FEOBV, which exhibits high binding affinity and specificity for presynaptic vesicular acetylcholine transporters. [18F]FEOBV enables the in-vivo assessment of the brain cholinergic integrity. As part of a pilot study, we conducted [¹⁸F]FEOBV scans on 6 postmenopausal women (age: 58 \pm 6) who had completed baseline Alzheimer's disease (AD) biomarker assessments, including Aβ PET (with [¹⁸F]florbetapir). The global [¹⁸F]FEOBV uptake declined with aging, and was also lower in two participants who were $A\beta$ +. We found a significant association between [18F]FEOBV uptake and the volume of the nucleus basalis of Meynert on subjects' structural MRI (β =2.37, p-value = 0.042*). Throughout the progression of AD, the most consistent neuronal losses are seen in cholinergic neurons, where these losses negatively affect attention, learning, and memory formation. In the past, a lack of direct/specific biomarker of cholinergic integrity has posed a barrier to the in-vivo assessment of this key brain process. [18F]FEOBV may be used an early in-vivo biomarker of Alzheimer's risk and identify individuals who may benefit the most from standard and novel procholinergic treatments.

Acknowledgment: This study was funded by the TIPS Award from Vanderbilt Brain Institute.