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Purpose of review

Neuroimaging research on attention-deficit/hyperactivity disorder (ADHD) continues growing in extent and
complexity, although it has yet to become clinically meaningful. We review recent MRI research on ADHD,
to identify robust findings, current trends and challenges.

Recent findings

We identified 40 publications between January 2019 and September 2020 reporting or reviewing MRI
research on ADHD. Four meta-analyses have presented conflicting results regarding across-study
convergence of functional and resting-state functional (fMRI and R-fMRI) studies on ADHD. On the other
hand, the Enhancing NeuroImaging Genetics Through Meta-Analysis international consortium has identified
statistically robust albeit small differences in structural brain cortical and subcortical indices in children with
ADHD versus typically developing controls. Other international consortia are harnessing open-science
efforts and multimodal data (imaging, genetics, phenotypic) to shed light on the complex interplay of
genetics, environment, and development in the pathophysiology of ADHD. We note growing research in
‘prediction’ science, which applies machine-learning analysis to identify biomarkers of disease based on
big data.

Summary

Neuroimaging in ADHD is still far from informing clinical practice. Current large-scale, multimodal, and
open-science initiatives represent promising paths toward untangling the neurobiology of ADHD.
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INTRODUCTION

More than 25 years of neuroimaging studies on
attention-deficit/hyperactivity disorder (ADHD)
have yielded a few apparently firm findings and
many open questions. The long-term objective is
to uncover the underlying pathophysiology to
reveal reliable biomarkers of prognosis and treat-
ment response, that is personalized medicine [1].
Unfortunately, ADHD neuroimaging research, as for
other psychiatric disorders, is still unable to inform
clinical practice [2].

The neuroimaging literature on ADHD is volu-
minous and inconclusive. As of September 30, 2020,
PubMed contained 1962 papers identified with the
search terms ‘ADHD’ and ‘MRI’. Here, we offer a
brief narrative review of recent studies using struc-
tural and functional MRI in patients with ADHD;
given the conflicting literature, we focus on meta-
analyses, mega-analyses, and novel multimodal
methods being proposed to parse brain-behavior
relationships in multidimensional space.
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TEXT OF REVIEW

Literature review: methodology

We systematically searched original research and
reviews published between January 1, 2019, and Sep-
tember 30, 2020, in PubMed and Ovid with the terms:
‘ADHD’ or ‘attention deficit hyperactivity disorder’
and ‘neuroimaging’. We identified 110 unique
articles, from which both authors independently
rved. www.co-psychiatry.com
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KEY POINTS

� Neuroimaging research literature on ADHD continues
to grow, and the last 21 months have seen progress in
statistical power, multimodal integration, and
technical complexity.

� Meta-analyses of functional neuroimaging research
have failed to provide spatial convergence across
studies, with the exception of meta-analysis focused on
a few networks of interest.

� The ENIGMA consortium is providing more robust
evidence about small but significant structural brain
differences between children with ADHD and typically
developing controls. Other multimodal ‘big data’
consortia are providing promising results linking
genetics, brain, and phenotypes.

� Machine-learning approaches hold promise to identify
multimodal markers related to the diagnosis and
prognosis of ADHD, although methodological
challenges need to be addressed.

� Neuroimaging in ADHD is still unable to inform clinical
practice; wider implementation of open science and
best practices in conducting and reporting research in
big and small endeavors is needed.

Neurodevelopmental disorders

Cop
screened and selected 40 publications on MRI
research in ADHD, among which we describe those
we believe most relevant in describing the state of
the art.
Systematic reviews and meta-analyses:
seeking convergence and understanding
heterogeneity

Meta-analyses of imaging studies pool brain coor-
dinates to determine whether spatial findings con-
verge beyond chance. For example, activation
likelihood estimation (ALE) assumes a spatial gauss-
ian distribution around each reported activation
peak and models how often such loci should overlap
under the null hypothesis [3]. Because the ALE
algorithm requires the input of loci yielding signifi-
cant group differences, most sample sizes are small,
and negative results are less likely to be published,
this process is biased towards false positives. This
may explain conflicting spatial locations and direc-
tions of differences across studies. To wit, recent
ADHD meta-analyses conducted at the whole-brain
level have largely concluded that findings in struc-
tural MRI, task-based MRI (fMRI), and resting state
fMRI (R-fMRI) do not currently converge spatially
across studies [4

&&

,5
&&

].
Specifically, Samea et al. [4

&&

] sought to build on
a prior positive meta-analysis of 55 fMRI studies [6].
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They pooled 96 studies (22 structural, 68 fMRI, and 6
R-fMRI) in children and adolescents, comprising
1914 unique participants. Disappointingly, their
main analyses failed to find spatial convergence
across studies and modalities. Prior positive fMRI
results [6] were ascribed to a software bug in an
earlier version of the ALE code which produced
overly liberal multiple comparison corrections
[4

&&

]. Focusing exclusively on R-fMRI, Cortese
et al. [5

&&

] meta-analyzed 30 R-fMRI studies compar-
ing children, adolescents, and adults with ADHD
versus typically developing control individuals
(TDCs), and obtained negative results on multiple
intrinsic functional connectivity metrics.

By contrast, two meta-analyses of R-fMRI studies
restricted to specific brain networks reported posi-
tive results. Gao et al. [7

&

] meta-analyzed 21 studies
including 700 patients with ADHD and 580 TDCs,
using anisotropic effect-size seed-based d-mapping
(AES-SDM), which includes both positive and null
results. Their analyses of seed-based correlation
studies (i.e., measuring functional connectivity
between preselected brain areas, named ‘seeds’,
and any other area) were limited by the data avail-
able to seeds in the default mode, frontoparietal,
and affective networks. Overall, their findings sup-
ported a ‘triple network’ model proposed for ADHD
and other neuropsychiatric disorders [8], with puta-
tive dysfunctional interactions among the default,
frontoparietal, and salience/ventral attention net-
works [8] in patients versus controls.

Sutcubasi et al. [9
&

] meta-analyzed a partly-over-
lapping set of 20 studies including 944 patients with
ADHD and 1121 TDCs, using multilevel kernel den-
sity analysis using contrasts/studies as units of anal-
ysis. Their correlation analyses were restricted a
priori to seeds in the default mode, cognitive con-
trol, salience, and affective/motivational networks.
Results supported the default network interference
hypothesis of ADHD [10], which attributes ADHD
symptoms to dysfunctions within the default net-
work and its interplay with ‘task-positive’ networks.

Divergent results from three meta-analyses
[5

&&

,7
&

,9
&

] with mostly overlapping input data raises
many questions. Although methodological differ-
ences likely contribute, their contrasts may also
reflect using a fully data-driven method [5

&&

] versus
analyses limited to four [9

&

] or three network seeds
[7

&

]. We note the negative analysis [5
&&

] included
multiple R-fMRI indices to address the ‘looking
under the lamppost’ bias. All three studies con-
cluded that the R-fMRI literature is still developing,
with insufficient numbers of original studies, most
with small, underpowered samples. Thus, any con-
clusions regarding intrinsic functional connectivity
remain tentative. By contrast, the issue of statistical
Volume 33 � Number 00 � Month 2021
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power in brain structure studies is being addressed
by mega-analyses.
Enhancing NeuroImaging Genetics Through
Meta-Analysis: identifying small but
consistent differences in brain structure

The Enhancing NeuroImaging Genetics Through
Meta-Analysis (ENIGMA) project has created open
international consortia, building on original efforts
to leverage large-scale collections of genetic and
neuroimaging data [11]. ENIGMA embodies global
open-science, comprising multiple study groups,
including one focused on ADHD [12]. This group
currently includes 36 centers in Europe, USA,
Australia, China, and Brazil, which have locally
analyzed cross-sectional MRI data from thousands
of participants with identical FreeSurfer software.
The resulting brain indices (e.g., thickness, volume,
surface area) can then be aggregated centrally with-
out threatening participant confidentiality.

In the first ENIGMA publication on ADHD [13],
differences in global intracranial and subcortical
gray matter volumes were documented in 1713
patients with ADHD versus 1429 age-matched
TDCs. In omnibus analyses, patients had smaller
global intracranial volume, and smaller volumes
of accumbens, amygdala, caudate, hippocampus,
and putamen, albeit with small effect sizes (Cohen’s
d between 0.1 and 0.19). Nearly all differences were
only present in children (versus adolescents or
adults) with ADHD. A subsequent effort examined
cortical thickness and surface area: in 2246 patients
with ADHD (74% male) versus 1934 TDCs (60%
male), ages 4–63 (mean age �11), smaller surface
areas were found widely, particularly in frontal,
cingulate, and temporal cortices, and thinner cortex
in the fusiform gyrus and temporal pole in children
with ADHD versus age-matched TDCs [14

&

]. Once
again, adolescents and adults with ADHD showed
no reliable differences from TDCs.

ENIGMA studies have also contrasted regional
cortical volumes versus TDCs in six psychiatric dis-
orders including ADHD [15], and subcortical brain
volumes, regional cortical thickness, and cortical
surface areas among ADHD, autism spectrum, and
obsessive-compulsive disorders [16]. Both studies
found that ADHD (and autism spectrum disorder)
presented unique patterns of brain structural abnor-
malities distinct from one another and from pat-
terns common to the others.

The ENIGMA studies, which continue to
emerge, demonstrate that large multicenter collab-
orations can provide well powered samples for cross-
sectional neuroimaging analyses; development mat-
ters, as statistically significant differences in ADHD
0951-7367 Copyright � 2020 Wolters Kluwer Health, Inc. All rights rese
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have been almost exclusively limited to children, for
reasons that remain unexplained; despite genetic
risk loci not differentiable with other psychiatric
disorders, ADHD exhibits unique patterns of volu-
metric abnormalities; and reliable differences in
brain structure between patients with ADHD and
TDCs have small effect sizes (0.10 < d < 0.3). These
humbling findings are consistent with the small
effect sizes of genome-wide significant results [17],
reflecting the multidimensionality of complex dis-
orders [18]. Nevertheless, such findings set a floor on
the scale of future studies seeking definitive results.
Brain imaging and genetics: the promise of
multimodal studies

Longitudinal, multicenter, and open-science efforts
are increasingly seeking to integrate imaging,
genetic and phenotypic data, exploring the inter-
mediary (‘mediator’) role of neuroimaging in trans-
ducing genetic load (quantified as polygenic risk
scores (PRS), the cumulative effect of common
DNA variants associated with a given disorder
[19]) into clinical symptoms. Such approaches can
also be applied to TDCs, assuming linearity across
the clinical continuum, an assumption of the
Research Diagnostic Criteria (RDoC) initiative [20].

The IMAGEN consortium comprises a longitu-
dinal, sex-balanced cohort of �2000 nonclinically
ascertained adolescents from eight European centers
[21]. These data allowed Barker et al. [22] to report an
association between ADHD PRS (from the first
ADHD genome-wide significant findings) [17] with
impulsivity and body mass index phenotypes, medi-
ated by grey matter volumes (in bilateral cerebel-
lum, amygdala, hippocampus, parahippocampus,
and orbital frontal cortex), and by function on a
monetary incentive delay fMRI task (in fusiform
gyrus and parahippocampus, postcentral and parie-
tal inferior, calcarine and occipital superior, and
frontal superior medial cortices). Albaugh et al.
[23] examined diffusion tensor imaging and cortical
thickness and found a small effect size association
between ADHD PRS, ADHD symptoms, and frac-
tional anisotropy in bilateral superior and inferior
longitudinal fasciculi; cortical thickness indices
were not associated with PRS.

Other relevant community samples include
Generation R, a birth cohort of Rotterdam children
in which higher ADHD PRS was associated with
smaller caudate volume, which mediated the rela-
tion between PRS and inattention symptoms in
1139 10-year-old participants [24]. Stojanovski
et al. [25] sought gene-imaging associations with
ADHD symptoms in 3611 individuals with or with-
out a history of traumatic brain injury (TBI) in the
rved. www.co-psychiatry.com 3
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Philadelphia Neurodevelopmental Cohort. Caudate
volume mediated the negative association between
PRS and ADHD symptoms regardless of TBI, but
corpus callosum genu fractional anisotropy was
only related to ADHD symptoms in those without
TBI, suggesting distinct genetic and environmental
pathways to ADHD symptoms.

Multimodal approaches have also been applied
to samples of patients with ADHD. Hermosillo et al.
[26] examined the association between PRS and R-
fMRI intrinsic functional connectivity in amygdala,
accumbens, and caudate in 196 patients with ADHD
and 119 TDCs (mean age�10 years) from the Psychi-
atric Genomics Consortium. Two functional connec-
tivity circuits (right caudate and parietal cortex;
accumbens and occipital cortex) were correlated with
both PRS and diagnostic status (ADHD vs. TDC).

Finally, Ing et al. [27
&

] examined the IMAGEN
dataset to identify structural (anatomic MRI and
diffusion tensor imaging) and R-fMRI correlates of
two transdiagnostic constructs, anxiety/depression
and executive dysfunction, in healthy individuals at
age 19. Anxiety/depression was associated with
decreased grey matter volume in the middle tempo-
ral gyrus, reduced fractional anisotropy in the cor-
pus callosum genu, and increased functional
connectivity between default mode network and
cerebellum. Executive dysfunction was associated
with decreased grey matter in right middle temporal
gyrus. They replicated the discovered neurobehavio-
ral associations in patients with ADHD, major
depressive, bipolar, and schizophrenia disorders in
the NeuroIMAGE clinical cohort [28]. In an ADHD
subanalysis (including 184 patients, 103 unaffected
siblings, and 128 TDCs), they found significant
smaller grey matter volumes in patients versus TDCs
in the brain areas they previously associated to
anxiety/depression (d¼0.26) and executive dys-
function (d¼0.32).

Analyses of multimodal neuroimaging, genet-
ics, and dimensional phenotypes require leveraging
increasingly powerful computational methods,
which we now briefly mention.
Machine learning to predict diagnosis and
prognosis of attention-deficit/hyperactivity
disorder

Machine learning methods are increasingly being
used to discriminate between patients with ADHD
and TDCs and to predict future clinical outcomes,
including treatment response [29

&

]. For instance,
Yoo et al. [30

&

] integrated multimodal neuroimaging
(structuralMRI,diffusion tensor imaging, fMRI, andR-
fMRI) with genetic, clinical, and neuropsychological
data to distinguish children with ADHD from TDCs.
4 www.co-psychiatry.com
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Although several imaging findings were promising in
‘predicting’ clinical scores and task performance (with
85% accuracy), their data were cross-sectional, the
training and validating datasets were small (47 and
18 per group, respectively), and, unsurprisingly,
genetic data did not contribute to their predictive
models. Other recent efforts using the open-access
‘ADHD-200’ data include Itani et al., who implicated
the limbic system in the pathophysiology of ADHD
[31], and Riaz et al., who instead highlighted the
frontal lobes [32].

Of note, although published studies report high
accuracy values (median �78%, range 54–100%)
[29

&

], concerns have been raised about their method-
ological robustness. Pulini et al. [33

&

] reviewed 69
machine-learning classification/prediction neuroim-
aging studies in ADHD and noted that circular anal-
ysis and small sample sizes inflate classification
accuracies and that many studies lack internal and
external validation. Circular analysis refers to using
the same, or overlapping, samples to train and test
classification algorithms, biasing their accuracy,
whereas lack of validation (i.e., testing algorithm
performance in new subjects, either within the study
population – internal – or in other populations –
external) limits generalization of prediction models
beyond included subjects. They estimated that diag-
nosticprediction accuracies in studieswith low risk of
circularity biases should range between 60 and 80%,
with sample size and accuracy negatively correlated.
Other active areas of research

We note in passing other themes in the recent
ADHD literature including the different presenta-
tions (formerly subtypes) [34,35] and the overlap/
comorbidity with reading [36,37] and autism spec-
trum [38,39] disorders.
Where is the field going?

Neuroimaging research in psychiatric disorders,
including ADHD, is still in its infancy. The crisis of
reproducibility in science extends beyond neuroim-
aging, but it certainly also applies here [40]. We take
the view that optimistic expectations are nearly
always required to motivate extraordinary novel ini-
tiatives, with the human genome project a recent
example. The early claims about the benefits of map-
ping human DNA were overblown, yet the recent
products have been innumerable. Some lessons from
genetics/genomics bear examining. After initial non-
replications of small-scale studies, the criterion of
independent replication prior to publication of pur-
portedly definitive results emerged. Crucially, the
principal funders of genetic studies insisted on full
Volume 33 � Number 00 � Month 2021

orized reproduction of this article is prohibited.



CE: Namrta; YCO/340209; Total nos of Pages: 7;

YCO 340209

Neuroimaging in ADHD Pereira-Sanchez and Castellanos

C

open sharing of genetics data, uploaded nightly,
rather than ‘after the data have been cleaned’ and
published. This culture change made it possible to
aggregate datasets of tens of thousands while geno-
typing costs dropped precipitously. Such improve-
ments in cost/efficiency have not yet affected the
acquisition of MRI data, which remains expensive
[41]. Eventually,novel low cost imaging technologies
may revolutionize structural imaging, although their
potential impact is just now being explored [42].

Beyond the large-scale efforts we have briefly
described, harmonized multicenter data acquisition
with open data sharing will increase in importance.
The Adolescent Brain Cognitive Development
(ABCD) study, although not specifically focused on
ADHD, included more than a thousand children with
ADHD at inception, who are being scanned every two
years from ages 9 to 20 [43]. NIH Report lists a new
research project (R01MH123831) begun in June 2020
focused on ADHD using ABCD. This and similar
studies will produce well powered insights into the
neurobiology of ADHD during the second decade of
life. Increasing emphasis on sharing of data and
analytic scripts will help assure that results are repli-
cable [44], even if they also yield small effects.

It is notable that most studies take as their
starting points the identification of reliable differ-
ences between patients with ADHD and TDCs. This
strategy is often interpreted as reflecting the desir-
ability of obtaining objective diagnostic criteria. We
disagree. For example, although cystic fibrosis was
the first genetic disorder to be ‘solved,’ the diagnosis
remains primarily clinical, because no single labora-
tory can test all the rare variants that contribute to
the 30% of cases not because of the single most
frequent mutation. The rationale for pursuing neu-
roimaging studies in psychiatric conditions is to
move closer to identifying the diverse pathophysi-
ologies that underlie the clinical heterogeneity we
observe. From that perspective, it is felicitous that
neuroimaging studies seem to support the relevance
of large-scale neuronal networks for models of brain
function [45

&

]. Fortunately, achieving cellular levels
of resolution is not necessary or even useful for
progressing in our understanding of brain function.

On the other hand, we do not believe that one-
size-fits-all templates of large-scale brain networks
(or templates for specific ages in childhood [46]) will
suffice. They represent a crucial intermediate step in
a process that is moving towards single-subject anal-
yses, without smoothing [47].

Even when native-space, unsmoothed imaging
becomes practical, addressing developmental ques-
tions will remain challenging. Structured hierarchi-
cal designs, which combine cross-sectional and
longitudinal approaches, are essential to resolve
0951-7367 Copyright � 2020 Wolters Kluwer Health, Inc. All rights rese
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differences between children and adults with ADHD.
An example of this approach, not yet applied to
clinical questions, was presented by Vasa et al. [48]
in a cross-lag sample of 298 healthy individuals
between 14 and 26 years-of-age, with state-of-the-
art methods to decrease the effects of head motion.
They found two types of trajectories in functional
connectivity, ‘conservative’ or ‘disruptive’. Specifi-
cally, motor networks were conservative (i.e., their
functional connectivity, already strong at adoles-
cence, increased through young adulthood), whereas
cortical-subcortical connections, especially associa-
tion, default mode, frontoparietal, and limbic net-
works tended to be disruptive (i.e. either their weak
functional connectivityatadolescence strengthened,
or their strong functional connectivity at adoles-
cence decreased over that age span) [48]. Such dis-
sociations, if replicated, would allow stratification of
brain circuit trajectories, the most cost-effective
means to dramatically increase statistical power.
Determining which of these trajectories typifies
ADHD development will be important.

Although we are in the era of big data, ‘small
science’ research (i.e., local studies with moderate
numbers of participants) is still needed to develop
novel methods, determine feasibility, and support
the career development of junior investigators [49].
Both types of studies must embrace transparency
and reproducibility, including preregistration of
hypotheses and data analytic plans [44].
CONCLUSION

Neuroimaging research on ADHD since 2019 has
documented that children with ADHD have smaller
globalandregionalbrainstructural indices thanTDCs,
in both cortical and subcortical areas, albeit with small
effect sizes. Functional imaging results are less clear;
some meta-analytic approaches suggest interplay of
several key networks is associated with ADHD; this
conclusion was not supported by the most compre-
hensive and unrestricted analyses. Multimodal
approaches integrating imaging, genetic, and pheno-
typic data are emerging, although their replicability
has yet to be confirmed. Adoption of open science and
best reporting practices are needed to make ADHD
neuroimaging research more methodologically sound
and relevant to improve the care of patients.
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