Vanderbilt University Medical Center Core Lab Kaizen

Helping You Make the Right Work Easier To Do
February 11th – February 13th, 2014
Meet the Event Team

Standing (left to right): Julia Hernandez, Kara Newton, Gail Baxter, Steve Myers, Kristy Petrie and Misty Smith; Seated (left to right): Darla Emberton and Micah Leach.
Event Focus & Objectives

Problem: Turnaround times for core lab (Chemistry, Hematology, UA, Coag) are too long for both routine and STAT requests.

Objectives:
- Identify opportunities to reduce turnaround times without negatively impacting quality

Scope: Specimen receipt in lab to resulted.

Indicators of Success:
- Routine turn-around times for Chemistry, UA, Hematology, Coag
- STAT turn-around times for Chemistry, UA, Hematology, Coag
Team Observes Current State

Team goes to “Gemba” to observe and document current state
Team Identifies Current State Wastes

- Samples sorted multiple times before getting on track
- Samples wait for extended times at central drop
- Up to 4 different locations to process samples (causing confusion)
- Accessioners frequently transporting specimens
- Med Techs walking to retrieve samples

44 issues identified during observations!
Current State Map

Issues/waste included for each process step

Process mapped from specimen receipt in lab to resulted
IDEAL Conditions

- STAT and Routine = Same (both processed in equally timely manner)
- Work is performed the same way across shifts
- Less congestion and organized work spaces
- Fewer people handling specimens
- Fewer holding areas
- Properly trained staff
Future State Map

Building on concepts from IDEAL, the team brainstormed for potential improvements.

Improvement opportunities identified for process steps.
Concept Generation

Multiple Design Concepts Generated
Concepts Prioritized – insert design criteria & priority matrix

<table>
<thead>
<tr>
<th>Customer Priority</th>
<th>Process Design</th>
<th>Central Processing</th>
<th>Decentralized</th>
<th>Combo (STAT)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 9 9 9 1 9 5 5 5 5 9</td>
<td>9 1 9 9 1 5 1 9 9 9 5</td>
<td>1 9 1 9 5 9 1 9 9 9 5</td>
<td>1 5 5 9 9 9 1 1 5 5 1</td>
<td>463</td>
<td></td>
</tr>
</tbody>
</table>
Elements of Final Design

- Spin all STATs offline during accessioning
- One designated processing area for Routines
- Specimens delivered to departments
- Defined transporter job functions & route
- Tube station distribute work to accessioners
Benefits of Final Design

• One designated processing area for routines
• Specimens delivered to departments by transporter
• Reduced congestion
• More uninterrupted time on the bench
• Analyzer ready specimens
• Lead accessioner responsible for all problem solving
• Reduced # racks in chemistry receiving area (from 9 to 3)
• Reduced touchpoints for STATs
Trial Thursday

Preparing “Ready” Racks

STAT accessioning/processing area set-up
Trial Results

Received in Lab to Final Result (BMP)

### Metric	Baseline	Trialled
Routine Chemistry (BMP) % Meeting Goal of 120 min | 74% | 91%
Routine Median (BMP) | 81 min | 55 min
Routine 90%'ile (BMP) | 169 min | 116 min
STAT Chemistry (BMP) % Meeting Goal of 60 min | 55% | 58%
STAT Median (BMP) | 58 min | 55 min
STAT 90%'ile (BMP) | 100 min | 86 min

- Baseline – December 2013 & January 2014
- Trial Sample Size
 - Routine (n=275)
 - STAT (n=69)

STATs accounted for 20% of volume during trial period
Trial Results

<table>
<thead>
<tr>
<th>Activity</th>
<th>Baseline (Jan 30, 2014)</th>
<th>Trialed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessioner out of chair (frequency)</td>
<td>8 occurrences/hour</td>
<td>2</td>
</tr>
<tr>
<td>Accessioner out of chair (total time)</td>
<td>3.6 min/hour avg</td>
<td>24 sec</td>
</tr>
<tr>
<td>Med Tech Walk to central drop or SR (frequency)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Coag</td>
<td>10x/hr</td>
<td>0</td>
</tr>
<tr>
<td>- Heme</td>
<td>4x/hr</td>
<td></td>
</tr>
<tr>
<td>- UA</td>
<td>2x/hr</td>
<td></td>
</tr>
<tr>
<td>Med Tech Walk to central drop (time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Coag (34 steps round trip)</td>
<td>10 sec/trip</td>
<td>0</td>
</tr>
<tr>
<td>- Heme (30 steps round trip)</td>
<td>30 sec/trip</td>
<td></td>
</tr>
<tr>
<td>- UA (40 steps round trip)</td>
<td>40 sec/trip</td>
<td></td>
</tr>
</tbody>
</table>
Trial Results

<table>
<thead>
<tr>
<th>Activity</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessioner out of chair (8hr shift, 6 accessioners, 2.5 shifts)</td>
<td>384 minutes additional accessioning time</td>
</tr>
<tr>
<td>Med Tech walking to central drop (8hr shift)</td>
<td></td>
</tr>
<tr>
<td>- Coag</td>
<td>Additional bench time per shift:</td>
</tr>
<tr>
<td>- Heme</td>
<td>13min/tech (Coag)</td>
</tr>
<tr>
<td>- UA</td>
<td>16 min/tech (Heme)</td>
</tr>
<tr>
<td></td>
<td>11 min/tech (UA)</td>
</tr>
</tbody>
</table>
Dotplot of Track to Final in min K Pilot
Trial Staffing

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat Accessioning</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td>Team member began to accession STATs when volume increased mid-morning</td>
</tr>
<tr>
<td></td>
<td>Chemistry – 41% STAT during trial</td>
</tr>
<tr>
<td></td>
<td>CBC – 22% STAT during trial</td>
</tr>
<tr>
<td>RT Accessioning</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td>During 18 observed transporter cycles, 33/627 routine tubes required processing at “central processing” area (note that Immunopath processing occurs after 4:00pm and Reference after 8:30pm)</td>
</tr>
<tr>
<td>Transporter</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Current transporter on PTO, position filled by team member</td>
</tr>
<tr>
<td>Messenger</td>
<td>No Change</td>
</tr>
</tbody>
</table>
Observations during Trial

- STAT placed in rack while Track Master on break, remained until Track Master returned from break
- Labels don’t always reflect the correct routing (i.e. - some therapeutics indicate CH on label but are tested in ES)
- Routine samples come in STAT bags, so tube station has to spend time sorting all samples
- Routines and STATs come in same bag for log-ins
- Need to determine which ES samples are aliquotted in processing area vs on automation line
- Visual aid for central processing to clarify when specimen is a short sample
Additional Actions

• Automation line maintenance/QC
 – Evaluate running maintenance/QC at low volume times
 – Evaluate frequency of QC
 – Determine capacity of aliquotting online

• Running out of reagent
 – Develop standard work for core lab
 – Develop stock list with quantities

• Align shift-to-shift scheduling with demand for Track Master/Dry Tech, Stat Bench

• Develop standard work to shift-to-shift hand-off
Recommendations/Next Steps

• Move forward with reducing the number of racks at chemistry drop-off
• Move forward with transporter
• Maintain temporaries at tube station to distribute work
• Continue spinning STATs (requires smaller centrifuges)