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ABSTRACT—Background: Monophosphoryl lipid A (MPLA) is a TLR4 agonist that has potent immunomodulatory

properties and modulates innate immune function to improve host resistance to infection with common nosocomial

pathogens in mice. The goal of this study was to assess the safety and efficacy of MPLA in a sheep model of burn injury

and Pseudomonas aeruginosa pneumonia. The sheep provides a favorable model for preclinical testing as their response to

TLR4 agonists closely mimics that of humans. Methods: Twelve chronically instrumented adult female Merino sheep

received 20% total body surface area, third-degree cutaneous burn under anesthesia and analgesia. At 24 h after burn,

sheep were randomly allocated to receive: MPLA (2.5 mg/kg i.v., n¼6), or vehicle (i.v., n¼6). At 24 h after MPLA or vehicle

treatment, Pseudomonas aeruginosa pneumonia was induced. Sheep were mechanically ventilated, fluid resuscitated and

cardiopulmonary variables were monitored for 24 h after induction of pneumonia. Cytokine production, vascular barrier

function, and lung bacterial burden were also measured. Results: MPLA infusion induced small and transient alterations in

core body temperature, heart rate, pulmonary artery pressure, and pulmonary vascular resistance. Pulmonary mechanics

were not altered. Vehicle-treated sheep developed severe acute lung injury during Pseudomonas aeruginosa pneumonia,

which was attenuated by MPLA as indicated by improved PaO2/FiO2 ratio, oxygenation index, and shunt fraction. Sheep

treated with MPLA also exhibited less vascular leak, lower blood lactate levels, and lower modified organ injury score. MPLA

treatment attenuated systemic cytokine production and decreased lung bacterial burden. Conclusions: MPLA was well

tolerated in burned sheep and attenuated development of acute lung injury, lactatemia, cytokinemia, vascular leak, and

hemodynamic changes caused by Pseudomonas aeruginosa pneumonia.

KEYWORDS—Burns, immunomodulation, inflammation, organ injury, pneumonia, sepsis, TLR4 agonists, vascular

permeability
INTRODUCTION of the skin barrier, invasive monitoring, mechanical ventilation,
Hospital-acquired infections are among the most pressing

threats facing modern healthcare facilities (1–3). Critically ill,

immunosuppressed, and high-risk surgical patients are most

vulnerable, although anyone receiving hospital care is at risk.

Patients with large total body surface area (TBSA) cutaneous

burns are particularly susceptible to hospital-acquired infec-

tions, especially pneumonia and wound infections, due to loss
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and immune dysfunction (4, 5). Pseudomonas aeruginosa

(P aeruginosa) is the most common organism causing pneu-

monia in burn patients (6–9).

Other than infection control strategies such as hand washing,

gowning, and aseptic technique, there are not any proven ways

to decrease or prevent infection in burn patients. In general, the

evidence that systemic antibiotic prophylaxis reduces the inci-

dence of wound and invasive infections or infection-associated

mortality is weak (10–12). Therefore, new strategies are

needed to decrease the incidence and severity of infections

in burn victims. Immunotherapy using toll-like receptor (TLR)

agonists provides a means of achieving that goal. Monophos-

phoryl lipid A (MPLA) is a TLR4 agonist with negligible

toxicity and pro-inflammatory effects but potent immunomod-

ulatory properties (13, 14). MPLA is employed as an adjuvant

in the human papilloma virus (Cervarix) and shingles (Shing-

rix) vaccines and has been administered safely to more than a

million people worldwide in that application (15, 16). Our

interest in MPLA is not as a vaccine adjuvant but a means of

augmenting innate immunity against common opportunistic

pathogens in vulnerable patients. Our published studies, in

mice, show that treatment with MPLA confers resistance
d reproduction of this article is prohibited.
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against Paeruginosa, S aureus, and C albicans infection as well

as polymicrobial sepsis caused by cecal ligation and puncture

(17–21). MPLA-induced protection persists for at least 15 days

and is independent of the adaptive immune system but highly

dependent on innate immune function (19, 21, 22). Thus, treat-

ment with MPLA induces a state of innate immune memory that

confers resistance against common hospital-acquired pathogens.

However, to develop MPLA for clinical use, further work is

needed in models that closely replicate the clinical environment.

The sheep model provides an ideal model for testing of

MPLA because both physiological and genomic responses of

sheep to TLR4 agonists are essentially identical to that of

humans (23–25). Consequently, sheep provide a model to test

the systemic effects of MPLA and gain an understanding of

how critically ill patients will respond to treatment. In this

study, we evaluated the effect of MPLA infusion on hemody-

namics and pulmonary function in sheep with skin burn. We

then assessed the effect of MPLA on the response of those

sheep to P aeruginosa pneumonia. Our study shows that burned

sheep tolerate MPLA infusion well and that MPLA prophylaxis

attenuates acute lung injury and sepsis severity during post-

burn P aeruginosa pneumonia.
METHODS

Animals

Twelve adult female Merino sheep (body weight [BW] 35.4� 1.0 kg)
were studied. The study was approved by the Institutional Animal Care and
Use Committee of The University of Texas Medical Branch and conducted
in compliance with the guidelines of the National Institutes of Health (NIH)
and the American Physiological Society for the care and use of
laboratory animals.

Surgical preparation of sheep for study

Fasted animals were surgically prepared for chronic study under isoflurane
anesthesia. Pre- and post-surgical analgesia was provided with long acting
(72 h buprenorphine SR (0.05 mg/kg, SR Veterinary Technologies, Windsor,
Colo). Catheters were placed into the right femoral artery and the left atrium
for continuous measurement of blood pressure and left atrial pressure,
respectively. A 7Fr Swan-Ganz thermal dilution catheter (Edwards Life-
sciences LLC; Irvine, Calif) was introduced through the right external jugular
vein and advanced into the pulmonary artery for measurement of cardiac
output, and pulmonary artery and central venous pressures. Following the
operative procedures, the sheep were given 5 to 7 days to recover. For
admission into the protocol the animals must have: a PaO2 >100 mm Hg
on room air, a core body temperature greater than 38oC and less than 408C, and
a hematocrit >20%.

Induction of burn injury

Instrumented sheep were anesthetized with intravenous ketamine (800 mg)
and inhaled isoflurane via mask (to effect) and tracheostomy was performed.
Pre- and postsurgical analgesia was provided with long acting (72 h) bupre-
norphine SR (0.05 mg/kg, SR Veterinary Technologies, Windsor, Colo) via the
subcutaneous route as previously described (26). Anesthesia was maintained
using inhaled isoflurane via tracheostomy. The 20% TBSA, third-degree flame
burn was made on one flank by Bunsen burner as previously described (27,28).
Afterward, anesthesia was discontinued and sheep were placed on mechanical
ventilation and monitored for 24 h in a conscious state. Sheep were fluid
resuscitated with lactated Ringer’s solution (LR) per protocol (29). Sheep were
studied in pairs to provide side-by-side assessment and were randomized to
treatment with saline (control) or MPLA.

Monophosphoryl lipid A (MPLA) treatment

MPLA derived from Salmonella enterica serotype Minnesota Re 595 was
purchased from Sigma-Aldrich Co (Catalog #: L6895, St. Louis, Mo),
Copyright © 2020 by the Shock Society. Unauthoriz
solubilized in sterile water containing 0.2% triethylamine solution (1 mg/
mL) and sonicated for 1 h at 408C. For administration, MPLA was diluted
in saline solution (25 mL) and administered by intravenous infusion (2.5 mg/kg)
over 50 min. Physiologic measurements were performed prior to and at 5, 10,
20, 30, 45, 60, 75, 90, 105, and 120 min after initiation of MPLA infusion in
awake sheep. During this and previous (burn induction) phases, sheep were
fluid resuscitated with LR using our standard formula (29).

Induction of pneumonia

At 24 h after MPLA or vehicle treatment, sheep were anesthetized (as
described in Burn Induction Section) and P aeruginosa (1.6 � 2.5� 1010

colony-forming units in 30-mL solution, strain; 27317, ATCC, Manassas, Va)
was instilled into the airways through a bronchoscope as previously described
(30–33). After instillation, sheep were maintained on mechanical ventilation
with a pressure-regulated volume control, assist-control (PRVC A/C) mode, a
tidal volume (TV) of 12 mL/kg, and a positive end-expiratory pressure of
5 cmH2O and monitored in an awake condition throughout for 24 h. Physiologic
measurements were performed at baseline and at every 3 h after infection out to
24 h. Sheep were fluid resuscitated with LR to maintain hematocrit at baseline
levels (�3%) (15,16).

Multi-organ function assessment

To assess the severity of multi-organ dysfunctions during pneumonia, we
modified the Sequential Organ Failure Assessment (SOFA) score (34). The
modified sheep SOFA (mSOFA) scores included the values of mean arterial
pressure (MAP) and PaO2/FiO2 ratio, total platelet count measured by HEMA-
VET HV950FS (Drew Scientific Inc, Miami Lakes, Fla), and total bilirubin and
creatinine concentrations in plasma as measured at the institutional clinical
chemistry laboratory through spectrophotometric assay (Supplemental Table 1,
http://links.lww.com/SHK/A872). To assess mental status, a simplified sheep
neurological/alertness assessment scale was developed (Supplemental Table 2,
http://links.lww.com/SHK/A873).

Bacterial clearance in lung

Lung tissue (100 mg from the dorsal edge of right middle lobe) was taken
during the necropsy (72 h post-burn), homogenized with 1� PBS and plated
(200 mL) onto soy agar plates. The plates were incubated for 24 h at 378C and
colony-forming units were counted.

Plasma interleukin-6 measurement

Arterial blood samples were collected into EDTA tubes (BD Vacutainer,
Ref# 367861, Franklin Lakes, NJ) before instillation of the P aeruginosa into
the lung, and at 6 and 24 h after the instillation. Blood was centrifuged at 1,800 g
at 48C for 10 min and plasma was aliquoted and frozen at�208C until the day of
assay. Quantification of interleukin 6 (IL-6) levels was performed using
enzyme-linked immuno-sorbent assays (ELISA) kit (RPA079Ov01, Cloud-
Clone Corp., Katy, Tex), according to the manufacturer’s instructions. All
samples and standards were assayed in duplicate.

Trans-endothelial electrical resistance assay

Pooled human dermal microvascular endothelial cells (Lonza, Basel,
Switzerland) were primed with MPLA (10 mg/mL) or vehicle for 24 h, washed,
and plated on 24-well ThinCert inserts (0.4 mm pore diameter, Greiner Bio-One,
Kremsmünster, Austria) at 4 �105 cells/mL. Prior to seeding, ThinCerts were
coated with 0.01% Poly-L-Lysine (EMD-Millipore, Burlington, Mass), 50%
glutaraldehyde (EMD-Millipore), and 0.25 mg/mL gelatin (Sigma, St. Louis,
Mo). Inserts were placed inside pots containing 950 mL culture media and
allowed to equilibrate. Trans-endothelial electrical resistance (TEER, V�cm2)
across the pots and inserts was measured using a cellZscope (nanoAnalytics,
Münster, Germany), reading once an hour. After 24 h, LPS (1 mg/mL) or vehicle
control was added as indicated and TEER was measured for another 16 h. TEER
readings were normalized to a baseline value (the last reading prior to treat-
ments) and percentage change from baseline for each group was plotted. The
area under the curve (AUC) was calculated by taking the percent change in
resistance (increase or positive and decrease or negative) relative to the baseline
TEER measurement prior to LPS and adding them together to get the area of
percent change over time.

Statistical analysis

All data were analyzed using GraphPad Prism 6 (GraphPad Software, La
Jolla, Calif). Variables are reported as mean� standard error of mean (SEM).
ed reproduction of this article is prohibited.
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Data were analyzed using Mann–Whitney U test or two-way ANOVA with
repeated measures followed by Bonferroni or Tukey post-hoc tests. A P value of
less than 0.05 was considered statistically significant.
RESULTS

MPLA infusion caused transient physiologic alterations in
burned sheep

Hemodynamics, pulmonary function, and core body temper-

ature were not different at baseline or during the 24-h period

following the cutaneous burn when comparing sheep ultimately

randomized to vehicle or MPLA treatment (Supplemental

Table 3, http://links.lww.com/SHK/A874).

The MPLA infusion caused changes in core body tempera-

ture and heart rate (HR) but mean arterial pressure and systemic

vascular resistance index were not affected (Fig. 1). Mean

pulmonary artery pressure (mPAP) and pulmonary vascular

resistance index (PVRI) were significantly elevated at 30 to

60 min following MPLA infusion and left atrial pressure, left

ventricular stroke work index (LVSWI), and stroke volume

index (SVI) were significantly decreased compared to control

beginning 30 min after MPLA infusion (Fig. 2). All parameters,
Copyright © 2020 by the Shock Society. Unauthorize

FIG. 1. Hemodynamic variables during MPLA or vehicle infusion. MPLA (
measured for 2 h after initiation of infusion. (A) Core body temperature, (B) heart rat
during the MPLA infusion. Open circles represent MPLA-preconditioned treatment
both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs. contro
with the exception of temperature and SVI, returned to baseline

by 60 min after initiation of MPLA infusion.

The MPLA infusion transiently increased respiratory rate

at 45 min after initiation of infusion but did not significantly

affect peak/plateau airway pressures, and lung dynamic/static

compliances (Fig. 3).

MPLA treatment improved oxygenation and pulmonary
mechanics in sheep with P aeruginosa pneumonia/sepsis

The PaO2/FiO2 ratio was decreased in sheep at 3 h after

P aeruginosa instillation and reached levels below 300 mm

Hg (mild ARDS) at 9 to 24 h after bacterial instillation in

vehicle-treated sheep (Fig. 4). Pulmonary oxygenation index

and pulmonary shunt fraction were increased at 3 h after

P aeruginosa instillation and remained increased throughout

the study period in vehicle controls (Fig. 4). Preconditioning

with MPLA significantly attenuated the worsening PaO2/FiO2

ratio, pulmonary oxygenation index, and shunt fraction after

P aeruginosa instillation. Peak and plateau airway pressures

were significantly increased and static compliance decreased in

vehicle-treated sheep with pneumonia (Fig. 5). Those changes

were attenuated in MPLA-treated sheep.
d reproduction of this article is prohibited.

2.5 mg/kg) or vehicle was infused over 50 min. Hemodynamics variables were
e, (C) mean pulmonary artery pressure, (D) systemic vascular resistance index
group animals. Closed circles represent control group. The animal numbers in
l). MPLA indicates monophosphoryl lipid A.
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FIG. 2. Hemodynamic variables during MPLA or vehicle infusion. MPLA (2.5 mg/kg) or vehicle were infused over 50 min. Hemodynamics variables were
measured for 2 h after initiation of infusion. (A) Mean pulmonary artery pressure, (B) pulmonary vascular resistance index, (C) left atrial pressure, (D) left
ventricular stroke work index, (E) stroke volume index, (F) cardiac index. Open circles represent MPLA-preconditioned treatment group animals. Closed circles
represent control group. The animal numbers in both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs. control).

FIG. 3. Respiratory variables during MPLA or vehicle infusion. MPLA (2.5 mg/kg) or vehicle was infused over 50 min. Respiratory variables were
measured for 2 h after initiation of infusion. (A) Respiratory rate, (B) peak airway pressure, (C) plateau airway pressure, (D) lung dynamic compliance, (E) lung
static compliance during the MPLA infusion period. Open circles represent MPLA-preconditioned treatment group animals. Closed circles represent control group.
The animal numbers in both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs. control).

310 SHOCK VOL. 53, No. 3 FUKUDA ET AL.



FIG. 4. Lung injury and gas exchange following P aeruginosa instillation into lungs. Sheep underwent 20% TBSA cutaneous burn at time 0 followed by
vehicle or MPLA (2.5 mg/kg) infusion at 24 h after burn injury. P aeruginosa was instilled into the lungs at 48 h after burn injury. (A) PaO2/FiO2 ratio, (B) oxygenation
index, (C) pulmonary shunt fraction. Open circles represent MPLA-preconditioned treatment group animals. Closed circles represent control group. The animal
numbers in both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs. control).

SHOCK MARCH 2020 MPLA AND POST-BURN PNEUMONIA 311
MPLA treatment attenuated pneumonia/sepsis-induced
changes in hemodynamics, lactate production, and organ
injury during post-burn pneumonia

Increases in cardiac index and decreases in systemic vascu-

lar resistance index caused by intrapulmonary P aeruginosa

instillation were significantly attenuated by MPLA (Fig. 6). No

significant differences were noted in heart rate or mean arterial

pressure. Core body temperature, mPAP, pulmonary artery

wedge pressure, PVRI, LVSWI, and right ventricular stroke

work index were not different between groups (data not

shown).

Instillation of bacteria significantly increased plasma lactate

concentrations in control sheep, which were significantly lower

in MPLA-preconditioned sheep (Fig. 7). mSOFA score was

increased during pneumonia in control sheep and significantly

improved by MPLA preconditioning (Fig. 7). The more favor-

able mSOFA score in MPLA-preconditioned sheep was related

to improved PaO2/FiO2 ratio and less hypotension (Supple-

mental Table 4, http://links.lww.com/SHK/A875). Numbers of

lung bacteria at 24 h after P aeruginosa instillation were

significantly lower in MPLA-treated sheep compared to control

(Fig. 7).
Copyright © 2020 by the Shock Society. Unauthorize

FIG. 5. Pulmonary mechanics following P aeruginosa instillation into lun
or MPLA (2.5 mg/kg) infusion at 24 h after burn injury. P aeruginosa was instilled into
pressure, and (C) lung static compliance during the whole study period. Open cir
represent control group. The animal numbers in both groups are n¼6. Data are
MPLA treatment attenuates systemic cytokine production
and vascular permeability during post-burn pneumonia
and sepsis

MPLA treatment significantly attenuated increases in IL-6

production at 6 and 24 h after P aeruginosa instillation (Fig. 8).

Preconditioning with MPLA reduced P aeruginosa-induced

plasma protein concentration changes and attenuated the

increase in lung wet to dry weight ratio indicating less

vascular leak (Fig. 9). To further assess the impact of

MPLA on endothelial barrier function, human endothelial

cell monolayers were primed with MPLA or vehicle prior to

LPS challenge. Measurement of barrier integrity by Trans-

endothelial electrical resistance (TEER, V�cm2) showed

significant improvement in human endothelial cell barrier

function after MPLA-priming compared to control (Fig. 9).
DISCUSSION

The major findings of this study are that MPLA infusion is

well tolerated in burned sheep and confers resistance to acute

lung injury, lactatemia, and hemodynamic alterations during

post-burn P aeruginosa pneumonia and sepsis. These findings
d reproduction of this article is prohibited.

gs. Sheep underwent 20% TBSA cutaneous burn at time 0 followed by vehicle
the lungs at 48 h after burn injury. (A) Peak airway pressure, (B) plateau airway

cles represent MPLA-preconditioned treatment group animals. Closed circles
expressed as mean�SEM (*P<0.05 vs. control).
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FIG. 6. Hemodynamic variables following P aeruginosa instillation into lungs. Sheep underwent 20% TBSA cutaneous burn at time 0 followed by
vehicle or MPLA (2.5 mg/kg) infusion at 24 h after burn injury. P aeruginosa was instilled into the lungs at 48 h after burn injury and hemodynamics were measured
for 24 h. (A) Cardiac index, (B) systemic vascular resistance index, (C) heart rate, (D) mean arterial pressure. Open circles represent MPLA-preconditioned
treatment group animals. Closed circles represent control group. The animal numbers in both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs.
control).

FIG. 7. Plasma lactate, mSOFA score, and lung P aeruginosa CFU following P aeruginosa instillation into lungs. Sheep underwent 20% TBSA
cutaneous burn at time 0 followed by vehicle or MPLA (2.5 mg/kg) infusion at 24 h after burn injury. P aeruginosa was instilled into the lungs at 48 h after burn injury
The figure shows (A) plasma lactate concentration and (B) modified sheep Sequential Organ Failure Assessment (mSOFA) score during the whole study period
and (C) numbers of the bacteria in lung culture (at 24 h after P aeruginosa infection). Open circles represent MPLA preconditioned treatment group animals.
Closed circles represent control group. The animal numbers in both groups are n¼6. Data are expressed as mean�SEM (*P<0.05 vs. control).

312 SHOCK VOL. 53, No. 3 FUKUDA ET AL.



FIG. 8. Plasma interleukin-6 during post-burn pneumonia. Sheep underwent 20% TBSA cutaneous burn at time 0 followed by vehicle or MPLA (2.5 mg/kg)
infusion at 24 h after burn injury. P aeruginosa was instilled into the lungs at 48 h after burn injury Plasma IL-6 concentrations were measured at 0, 6, and 24 h after
P aeruginosa challenge. Data are expressed as mean�SEM (*P<0.05 vs. vehicle (veh)).
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support the clinical relevance of applying MPLA, and other

TLR4 agonists, to prevent and decrease the severity of serious

infections and organ injury in high-risk populations such as

those suffering major burns. In the present study, MPLA

treatment was initiated after burn injury but before microbial

challenge. Our model is clinically relevant since one could

envision treating burn victims with MPLA early during burn

shock resuscitation, or shortly thereafter, to improve down-

stream resistance to organ injury and infection. Burn patients

are particularly susceptible to infections and lung injury and

represent a population that could benefit significantly from

MPLA prophylaxis (6, 9, 35). Sepsis and respiratory failure are

the most common causes of morbidity and mortality in burn
Copyright © 2020 by the Shock Society. Unauthorize

FIG. 9. The graph shows that (A) plasma protein concentration changes
ratio (at 72 h), and (C) trans-endothelial electrical resistance in human
preconditioned treatment group animals. Closed circles represent control group
are expressed as mean�SEM (*P<0.05 vs. control).
victims that survive the acute phase of injury (9). Furthermore,

the lungs are the most common site of serious infections in

severely burned patients and P aeruginosa is the most common

pathogen (9, 36). The Centers for Disease Control (CDC)

defines P aeruginosa as the most common cause of pneumonia

in ICUs and the second most common gram-negative pathogen

causing hospital-acquired infections (36–38). P aeruginosa is

of particular clinical concern because of its extraordinary

resistance to antibiotics resulting in the CDC classifying it

as a ‘‘SERIOUS’’ threat to public health (39). Thus, the ability

of MPLA to confer resistance to P aeruginosa pneumonia has

clinical implications beyond application in burn patients alone.

Any patient group that is at risk of developing P aeruginosa
d reproduction of this article is prohibited.

during pneumonia/sepsis period (48–72 h), (B) lung wet-to-dry weight
dermal microvascular endothelial cells. Open circles represent MPLA
. The animal numbers in both groups are n¼6 in graph (A) and (B). Data
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pneumonia could benefit including intubated critically ill

patients and persons suffering major trauma, high-risk surgery,

or prolonged hospitalization.

Sepsis is the leading cause of death in non-cardiac intensive

care units (ICU) and accounts for 40% of ICU expenditures (40,

41). Patients who survive sepsis suffer long-term physical and

cognitive disabilities and have a high 1-year mortality rate (42,

43). Over the past two decades the incidence of sepsis has

increased and that trend is likely to continue due to our aging

population, increased use of immunosuppressive drugs and

invasive procedures and the emergence of antibiotic-resistant

pathogens (41, 44). Attempts at effectively treating sepsis have

proven exceedingly difficult. No drugs are currently approved

by the FDA for the treatment of sepsis due to the repeated

failure of clinical trials (45, 46). Therefore, new strategies are

needed to decrease the burden of hospital-acquired infections

and sepsis. The addition of immunoadjuvant therapy, such as

that provided by treatment with TLR4 agonists, has significant

potential to augment existing prophylactic approaches.

MPLA treatment attenuated acute lung injury during P

aeruginosa pneumonia in sheep preconditioned with MPLA

compared with vehicle-treated controls as indicated by more

favorable PaO2/FiO2 ratio, oxygenation index, shunt fraction,

and airway pressures. Those findings were paralleled by lower

systemic inflammation reflected by lower plasma IL-6 con-

centrations in MPLA-treated sheep. The results indicate that

MPLA treatment lessened pulmonary and systemic inflamma-

tion, both of which can precipitate or contribute to acute lung

injury. This is clinically important since acute lung injury is

among the most common causes of mortality in severely burned

patients (9). Three factors are likely to contribute to the

decreased inflammation and lung injury observed in MPLA-

preconditioned sheep. First, MPLA augmented clearance of

bacteria from the lungs as indicated by lower Paeruginosa CFU

in lung cultures from MPLA-treated sheep. This is consistent

with previous studies showing that MPLA facilitates clearance

of bacteria at sites of infection and decreases the dissemination

of bacteria to distant sites (19, 21, 22). MPLA-induced protec-

tion persists for at least 15 days and is independent of the

adaptive immune system but highly dependent on innate

immune function (19, 21, 22). The mechanisms of improved

microbial clearance are multifactorial and include expansion of

myeloid cell numbers in bone marrow and blood in association

with increased myeloid cell recruitment to sites of infection and

augmented microbial phagocytosis and killing (18, 20, 21, 47).

Second, MPLA is known to induce endotoxin tolerance, a state

of attenuated cytokine production during periods of inflamma-

tion and infection. Our cytokine measurements showed signifi-

cantly decreased plasma IL-6 concentrations in MPLA-primed

sheep compared to controls (18, 48, 49). That finding connotes

decreased local and systemic inflammation in sheep receiving

MPLA treatment, which is likely to translate into attenuated

lung injury (50, 51). Third, it appears that MPLA treatment

helps to maintain endothelial barrier integrity since plasma

protein leak was attenuated in MPLA-treated mice. Loss of

endothelial barrier function is a contributing factor to the

development of pulmonary edema during acute lung injury

and the acute respiratory distress syndrome. This is likely due
Copyright © 2020 by the Shock Society. Unauthoriz
to the ability of MPLA to modulate the endothelial cell

response to microbial products and cytokines. Our previous

studies, using human vascular endothelial cells, show that

MPLA priming will attenuate TLR agonist-induced cytokine

production by endothelial cells and improve barrier function

through mechanisms activated via the MyD88-dependent sig-

naling pathway (49, 52, 53).

The sheep model is advantageous for preclinical testing of

TLR4 agonists because the physiologic and genomic response

of sheep to TLR4 agonists is nearly identical to that of humans

and sheep provide a model in which common clinical variables

can be measured in real time (23, 54, 55). Findings from the

present study support the validity of sheep as a robust model for

preclinical testing of TLR4 agonists. The response to MPLA

observed in this study is highly similar to that observed in

humans. The dose of MPLA chosen for our study was based on

results published by Astiz et al. (48) for normal human vol-

unteers. They reported that human subjects did not experience

subjective side effects until MPLAwas administered at doses of

10 mg/kg or greater. At 20 mg/kg, humans experienced mild to

moderate symptomatology in association with increases in HR,

temperature and elevated plasma TNFa, IL-6 and IL-8 con-

centrations (48). Subjects in the 20 mg/kg group did not require

therapy or intervention. We chose a dose of MPLA below the

10 mg/kg threshold because we employed burned, rather than

normal, uninjured subjects in our study. Due to the inflamma-

tory state induced by burns, we predicted that the physiologic

and inflammatory responses to MPLA would be heightened.

We observed that hemodynamics and respiratory function were

minimally impacted by MPLA infusion at a dose of 2.5 mg/kg

and that the response of sheep closely mimicked that seen in

humans at similar doses. The most notable physiologic changes

induced by MPLA infusion were increases in mean pulmonary

artery pressure and pulmonary artery resistance. Those alter-

ations persisted for about 30 min after MPLA perfusion and

then returned to baseline. Although the burned sheep tolerated

those alterations well, it is possible that burn victims suffering

inhalation injury and a significant respiratory insult could

respond unfavorably. Future studies using a burn and smoke

inhalation model would be useful in assessing that possibility.

Our results provide important information about the host

response to systemic MPLA infusion and the ability of MPLA

to improve resistance pulmonary infection. However, further

work is needed. We employed a single dose of MPLA that was

guided by previous studies from humans. However, dose

finding studies are needed to identify the dose of MPLA that

is best tolerated and provides optimal immunomodulatory

effect. The 2.5 mg/kg dose is a good starting point since MPLA

was well tolerated and effective at that dose. Questions also

remain about optimal timing of MPLA treatment. In this study,

MPLA was administered 24 h after burn injury and 24 h prior to

bacterial challenge. In previous studies in mice, we have

initiated MPLA treatment 2 to 3 days after burn injury and

24 h prior to Paeruginosa burn wound infection (47). Results of

the present study indicate that it is generally safe to administer

TLR4 agonists within 24 h of a major burn injury. We do not

know if administration of MPLA during early fluid resuscita-

tion will have significant physiologic impact. We also do not
ed reproduction of this article is prohibited.
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know if administration of MPLA at the time of infection

initiation will be beneficial. Our previous studies suggest that

prophylactic administration of MPLA 24 h prior to infection

provides optimal protection and that the beneficial effects

persist for at least 15 days (18, 21). Results of the present

study provide proof of concept that MPLA, and other mono-

phosphorylated TLR4 agonists, can be administered safely in a

model that closely mimics human critical illness and induces

protection from organ injury caused by pneumonia and sepsis.
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