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The CD1–lipid presentation system
allows the immune system to sense
alterations in lipid homeostasis, and
complements the classical MHC–pep-
tide presentation system. There are
remarkable similarities and surprising
differences in the way that TCRs
engage CD1–lipid versus MHC–pep-
tide complexes.

Group 1 CD1 proteins (CD1a–c) pre-
sent a variety of endogenous, myco-
bacterial, and potentially other bacterial
Series: The Biology of Antigen Presentation

Feature Review
Mechanisms and
Consequences of Antigen
Presentation by CD1
Luc Van Kaer,1,* Lan Wu,1 and Sebastian Joyce1,2

The CD1 proteins are a family of non-polymorphic and MHC class I-related
molecules that present lipid antigens to subsets of T lymphocytes with innate- or
adaptive-like immune functions. Recent studies have provided new insight into
the identity of immunogenic CD1 antigens and the mechanisms that control the
generation and loading of these antigens onto CD1 molecules. Furthermore,
substantial progress has been made in identifying CD1-restricted T cells and
decoding the diverse immunological functions of distinct CD1-restricted T cell
subsets. These findings shed new light on the contributions of the CD1 antigen-
presentation pathway to normal health and to a diverse array of pathologies, and
provide a new impetus for exploiting this fascinating recognition system for the
development of vaccines and immunotherapies.
lipids to T cells. CD1b-restricted T cells
include subsets expressing germline-
encoded TCRs.

Group 2 CD1 proteins (CD1d) present
diverse endogenous and exogenous
lipid antigens to subsets of natural killer
T (NKT) cells expressing semi-invariant,
biased, or diverse TCRs. /-Linked gly-
cosylceramides have emerged as
major endogenous ligands that control
the functions of invariant NKT cells.

Significant progress has been made
towards the development of lipid-
based vaccines and immunotherapies.

1Department of Pathology,
Microbiology and Immunology,
Vanderbilt University School of
Medicine, Nashville, TN, USA
2Veterans Affairs Tennessee Valley
Healthcare System, Nashville, TN,
USA

*Correspondence:
luc.van.kaer@vanderbilt.edu
(L. Van Kaer).
Antigen-Presentation Systems
Products encoded by the major histocompatibility complex (MHC) region of the vertebrate
genome bind peptide fragments from pathogens and display them at the surface of antigen-
presenting cells (APCs) for appraisal by T lymphocytes [1]. A hallmark of the classical MHC class I
and class II proteins is their extensive polymorphism, which determines histocompatibility,
controls host resistance to infection, and influences susceptibility to autoimmunity. In addition
to the classical MHC class I products, many jawed vertebrates express non-polymorphic, MHC-
related proteins with diverse immune functions [2]. Members of the CD1 family of MHC class I-
related proteins present self- and foreign lipid antigens to T lymphocyte subsets whose functions
are less well understood than conventional MHC-restricted T cells. Nevertheless, the CD1
antigen-presentation system provides new targets for the development of vaccines and immu-
notherapies against a variety of diseases. To accomplish this goal, it is crucially important to
identify the antigens that are recognized by CD1-restricted T cells, to understand the pathways
that control the generation and loading of these antigens onto CD1 molecules, and to clarify the
molecular basis for lipid antigen recognition by CD1-restricted T cell receptors (TCRs). Recent
studies have provided important insight into the mechanisms involved in the generation of
immunogenic CD1 antigens, and this is invaluable for understanding the functions of this
antigen-presentation system in health and disease as well as for exploiting this system for
vaccine development and therapeutic purposes.

General Themes in the CD1 Antigen-Presentation System
CD1 Genes, Proteins, and Evolution
CD1 proteins were originally identified as b2-microglobulin (b2m; see Glossary) associated
heavy chains encoded in a locus on human chromosome 1 [3,4]. This region encodes five CD1
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Glossary
Adjuvant: chemical substance used
to induce an innate immune
response, and then enhances and
directs adaptive immune responses
to the vaccine antigen.
Anergic: an immune cell property
characterized by unresponsiveness to
antigen resulting from cell-intrinsic
tolerance induction.
Chaperone: in antigen processing,
chaperones facilitate the assembly
and transport of MHC proteins. They
include products involved in general
ER quality-control and those with
specific functions in MHC class I-,
MHC class II-, or CD1-restricted
antigen presentation.
Cortical thymocytes: thymocytes
are hematopoietic precursor cells to
the T cell lineage in the thymus.
Thymocytes in the cortical area of the
thymus, the outer layer of this organ,
are the most immature and express
CD1.
Double-negative cells: T cells that
lack CD4 and CD8 coreceptor
expression.
Hepatic stellate cells: these cells,
also known as perisinusoidal or Ito
cells, store vitamin A in the liver,
become activated during liver injury,
and play a major role in liver fibrosis.
Humanized mice: mice carrying
functional human genes, cells, tissues
or organs.
Langerhans cells: dendritic cells
that uniquely express langerin
(CD207) and reside in the epidermis
of the skin and some mucosal
epithelia.
Lectin: a protein that binds particular
sugars.
Marginal zone B cells: a subset of
non-circulating B cells with innate-like
properties that reside within the
marginal zone–the region between
the white (lymphoid) and the red
(non-lymphoid) pulp–of the spleen.
Microbiota: the variety of symbiotic,
commensal and parasitic
microorganisms that are normally
associated with metazoans.
b2-Microglobulin: the invariant
soluble component of all MHC class I
and many MHC class I-related
molecules such as the CD1 proteins.
It provides stability to MHC class I
and class I-like structures.
MHC class II-associated invariant
chain: this transmembrane protein,
also known as the MHC class II g
chain or CD74, is a chaperone that
binds within the groove of MHC class
isoforms (CD1a–e) that, based on sequence homology, were classified into group 1 (CD1a–c)
and group 2 (CD1d) proteins, whereas CD1e was considered to be an intermediate isoform,
sometimes referred to as group 3 [5]. Group 1 and 2 CD1 proteins are expressed at the cell
surface and function as antigen-presenting molecules, whereas CD1e is only expressed
intracellularly and is involved in processing and editing lipids for presentation by the other
human CD1 isoforms. Another distinguishing feature is that group 1 CD1 proteins are expressed
predominantly on professional antigen-presenting cells, whereas group 2 CD1 proteins are
expressed more widely. In addition, expression of group 1 but not group 2 CD1 proteins is highly
inducible by microbial products and cytokines. Each of the CD1 proteins is constitutively
expressed on cortical thymocytes, and this expression is required for the intrathymic devel-
opment of CD1d-restricted T cells [6] and most likely also for the selection of group 1 CD1-
restricted T cells [7].

The CD1 antigen-presentation system predates the evolutionary split between mammals and
reptiles [8]. The ancient origin of CD1, together with its evolutionary conservation among all
mammalian species examined [9], suggests important functions for this antigen-presentation
system during an immune response. The number of CD1 genes in mammals differs widely
among species, with some mammals expressing >10 CD1 genes. Similarly to humans, several
other mammals such as dogs, horses, and guinea pigs contain genes for all five CD1 isotypes,
whereas mice only encode CD1d protein. The absence of group 1 CD1 genes in mice has
complicated the functional analysis of this group of CD1 proteins, and this has been partially
overcome by studying humanized mice [10,11].

CD1 Structure, Antigens, and TCR Interaction
Crystal structures of CD1 molecules have revealed an overall resemblance to MHC class I but
with two key differences [1,8,12]: (i) the CD1 inner surface is lined with hydrophobic residues,
and (ii) the /-helices of CD1 are extended further away from the floor of the cleft, resulting in a
deeper antigen-binding groove (Figure 1A). The size of the antigen-binding groove differs
substantially among distinct CD1 isoforms in the following order: CD1a < CD1d < CD1c < C-
D1e < CD1b (Table 1). Similarly to the specificity pockets (labeled A–F) of classical MHC class
I molecules, all CD1 molecules contain two antigen-binding pockets, called A0 and F0 (Figure 1).
In addition, CD1b contains a C0 pocket similar to the C pocket of MHC class I, as well as an
additional T0 or ‘tunnel’ pocket.

CD1 molecules can bind to a variety of self- and foreign lipid antigens, but only a fraction of these
activate T cells [8,13,14]. Examples of CD1 antigens are shown in Figure 2. Some specific lipids
such as sulfatide (30-sulfated b1-D-galactosylceramide), an endogenous glycolipid highly
expressed in neuronal cells, can promiscuously bind to all CD1 isotypes [15]. Sulfatide-reactive
T cell lines restricted by all group 1 and 2 CD1 isotypes have been identified (Table 1). The
diversity of CD1 antigens includes lipids, glycolipids, phospholipids, lipopeptides, oils, and even
non-lipid molecules. Crystal structures have revealed that lipids are oriented such that hydro-
phobic alkyl chains are buried deep within the antigen-binding pockets and the hydrophilic
headgroups are solvent-exposed (Figure 1) [1,8,12]. Because of their differing volumes and
shapes, the antigen-binding grooves of distinct CD1 isoforms can accommodate lipids con-
taining alkyl chains of variable lengths. Interestingly, CD1b and CD1c can even bind to lipids with
alkyl chains that are longer than the calculated size of their respective antigen-binding grooves.
To accommodate long alkyl chains, one end of the lipid protrudes out of the groove via
accessory portals. Such a detour ensures that the long alkyl chain does not interfere with
TCR interactions. Conversely, CD1 molecules often present lipids with alkyl chains that are much
shorter than the predicted size of the antigen-binding groove, which would leave extra space in
the pockets, possibly causing structural problems. Analyses of CD1 complexes bound to short-
chain lipids revealed that the unoccupied pockets were filled with spacer lipids that provide
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II molecules, facilitates class II transit
to endolysosomal compartments,
and prevents peptide binding until its
release and exchange with antigenic
peptides.
Pathobiont: any organism that under
normal circumstances lives as a
symbiont with its host but under
some situations can cause disease.
Phospholipase: any of the four
enzymes that hydrolyze specific ester
bonds in phospholipids.
Portal: for CD1 proteins, portals are
open areas of the antigen-binding
groove where portions of the antigen
can project out of the groove.
Professional antigen-presenting
cells: a group of antigen-presenting
cells that include dendritic cells,
macrophages, and B cells, and which
can activate naïve T cells.
Specificity pockets: for the
classical MHC class I and II proteins,
specificity pockets in the antigen-
binding groove interact with
conserved residues of the bound
peptide. CD1 proteins similarly
contain specificity pockets that
interact with conserved portions of
the bound lipid.
Tetramers: in T cell biology,
fluorescent-labeled, tetrameric forms
of MHC or CD1 proteins loaded with
specific antigens are employed to
identify antigen-specific T cells.

Cell membrane 

Pep�de an�gen 

Spacer lipid 

Lipid an�gen (A)

(B)

α-GalCer–CD1d FLRGRAYGL–B∗08:01 

A′ F′ 

CD1                                                               MHC class I 

A D E 
F 

B 
C 

β2m β2m

Figure 1.

(Figure legend continued on the bottom of the next page.)

Comparative Anatomy of the /-GalCer–CD1d and Peptide–MHC Class I Ternary Structures. (A)
Schematic view showing the key features of CD1 and MHC class I proteins. The specificity pockets are labeled A0 and F0 for
CD1 and A–F for MHC class I molecules. Note that CD1b contains additional pockets (C0 and T0; not depicted). The CD1
groove is occupied by a lipid antigen and the MHC class I groove is occupied by a peptide antigen. In addition to an antigenic
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structural stability to the groove (Figure 1A, left) [16,17]. Thus, with the assistance of multiple
antigen-binding pockets, accessory portals, and spacer lipids, CD1 molecules can diversify the
size and range of lipids they present to T cells.

The crystal structures of CD1–lipid complexes have revealed striking similarities and important
differences with MHC–peptide complexes that have crucial implications for TCR recognition
[1,8,12]. Whereas amino acid side-chains of the peptide are solvent-exposed and available for
TCR interactions along the MHC groove, the region above the A0 pocket at the left side of the
CD1 groove (referred to as the A0 roof) is closed, leaving only the polar moiety of the lipid to
protrude out of CD1 via the F0 portal at the right side of the groove, thereby making the
headgroup available for interactions with the TCR (Figure 1). Crystallographic studies of
TCR/MHC–peptide complexes have revealed a diagonal or sometimes near-orthogonal binding
mode with a common docking topology along the center of the groove in which the TCR/ chain
is positioned over one /-helix (from the /2 domain of MHC class I or the b1 domain of MHC class
II) and the TCRb chain is positioned over the second /-helix (from the /1 domain of MHC class I
or the /1 domain of MHC class II). A similar topology has been observed in several TCR/CD1–
lipid complexes, although the semi-invariant TCR expressed by a subset of CD1d-restricted T
cells is oriented parallel to the axis of the groove (Figure 3) [1,8]. In addition, owing to the
asymmetric nature of the CD1 groove, TCRs may shift either to the left side or to the right side of
the groove, resulting in wide variation in the extent of interactions with the protruding lipid
headgroup.

CD1 Antigen-Processing Pathways
The assembly of CD1–lipid antigen complexes is initiated in the lumen of the endoplasmic
reticulum (ER) by association of CD1 heavy chains with a variety of chaperones such as
calnexin, calreticulin, and the thiol oxidoreductase ERp57 (Figure 4), which assist in folding and
assembly [5,18,19]. CD1 heavy chains then bind to b2m as well as to a variety of endogenous ER
lipids, possibly with the assistance of spacer lipids, that together function as chaperones to
stabilize the CD1 molecule. This association is reminiscent of the binding of newly synthesized
MHC class II molecules with the MHC class II-associated invariant chain in the ER. Loading
of such ER-resident lipids onto newly synthesized CD1 molecules is facilitated by microsomal
transfer protein (MTP), an ER-resident lipid-transfer protein (LTP) that is also known for its
capacity to facilitate the assembly of very low density lipoproteins (VLDL) and chylomicrons. The
CD1–lipid complexes subsequently egress to the plasma membrane, followed by internalization
and entry into endosomes. CD1b–d proteins contain a tyrosine-based sorting motif that permits
their binding with the adaptor protein complex 2 (AP2), which facilitates entry into a variety of
endosomal compartments. Human CD1b and mouse CD1d (but not human CD1d) also contain
AP3 sorting motifs that facilitate the entry of these CD1 isoforms into lysosomes. CD1a, which
lacks such sorting motifs, exhibits AP-independent recycling to early endosomes. In this
manner, different CD1 isoforms can sample the lipid antigens that may be present in distinct
intracellular compartments (Figure 4), potentially eliciting specific and non-redundant T cell
responses. The ER-derived lipid cargo on these internalized and differentially sorted CD1
proteins may then be replaced with other endogenous or exogenous lipids. Lipid transport
to these compartments is facilitated by lipoproteins, lipoprotein receptors, and lectin receptors
lipid, the CD1 groove may also contain a spacer lipid that fills up extra space in the antigen-binding pockets to stabilize the
CD1 structure. (B) The structures of human /-GalCer–CD1d (top left) and peptide (Epstein–Barr virus-derived
FLRGRAYGL)–HLA-B*08:01 (top right) complexes showing the electrostatic surfaces of the heavy chain and b2m. Note
the depth of the CD1d antigen-binding groove that is accessed by the ligand through a narrow portal. By contrast, the
peptide antigen-binding groove is relatively shallow and is accessed by a larger opening. These same structures were
turned 908 toward the reader to show the solvent-exposed polar galactose headgroup of /-GalCer (bottom left) and the
roughly alternating amino acid side-chains of the MHC-bound peptide (bottom right). Structures were generated by PyMol
using the protein database IDs 3HUJ (left) [118] and 3SJV (right) [119]. Abbreviation: b2m, b2-microglobulin.
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Table 1. Salient Features of the CD1 Antigen-Presentation Systema

CD1
isoform

Groove
volume

TCR TCR variability:
T cell subset
designation

Antigens recognized Refs

CD1a 1.35 nm3 /b Diverse Sulfatide, PE, PI, PC, lyso-PC,
fatty acids, squalene, wax
esters, dideoxymycobactin

[27,28,30,107]

CD1b 2.20 nm3 /b Diverse Sulfatide, mycolic acid, glycerol
monomycolate, diacylated
sulfoglycolipids

[107–110]

/b Semi-invariant:
GEM T

Glucose monomycolate [35]

/b Biased:
LDN5-like T

Glucose monomycolate [36]

CD1c 1.78 nm3 /b Diverse Phosphomycoketide, mannosyl-
Phosphomycoketide,
lipopeptides

[41,40]

gd Diverse Sulfatide, lyso-PC,
phosphomycoketide, mannosyl-
phosphomycoketide

[43,107]

CD1d 1.65 nm3 Type I NKT or iNKT cells

/b Semi-invariant:
V/14 (mouse) or
V/24 (human) NKT

/-GalCer, b-GalCer, /-GlcCer,
/-GalACer, /-GalDAG,
/-GlcDAG, cholesteryl
/-glucoside, asperamide B,
GD3, iGb3, PE, PI, PC, lyso-PC,
lysopeptidophosphoglycan

[50–59,74,77,78,111–115]

/b Semi-invariant:
V/10 NKT

/-GalCer, /-GlcCer,
/-GlcADAG

[81]

Type II NKT, dNKT, or vNKT cells

/b Biased:
sulfatide-reactive
dNKT

Sulfatide, b-GlcCer, b-GalCer [62,107,116]

/b Diverse:
'atypical’
dNKT

/-GalCer [97]

/b Diverse:
non-sulfatide-
reactive
dNKT

PG, PI, cardiolipin, lyso-PE non-
lipid small molecules (e.g.,
PPBF), peptides (synthetic,
ovalbumin-derived, collagen-
derived)

[60,61,63,98,99,102]

TCRgd+ NKT cells

gd Biased Cardiolipin [117]

CD1e 2.00 nm3 � Sulfatide, PI, dimannosylated PI,
diacylated sulfoglycolipids,
hemi-bis(monoacylglycero)-
phosphate

[105,106]

aAbbreviations: dNKT, diverse NKT; GalCer, galactosylceramide; GalACer, galacturonosylceramide; GalADAG, galactur-
onosyldiacylglycerol; GalDAG, galactosyldiacylglycerol; GD3, ganglioside D3; GEM, germline-encoded mycolyl-specific;
GlcCer, glucosylceramide; iGb3, isoglobotrihexosylceramide; iNKT, invariant NKT; NKT, natural killer T; PC, phospha-
tidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PPBF, phenyl 2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonate; vNKT, variant NKT.
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Figure 2. Select Antigens and Spacer Lipids of the CD1 Antigen-Presentation System. Structures are shown of select endogenous and exogenous antigens
presented by distinct CD1 isotypes. Spacer lipids bound to CD1b, the only CD1 isotype where such lipids have been molecularly characterized thus far, are also depicted.
For CD1d, antigens recognized by key subsets of CD1d-restricted T cells are shown. Note that endogenous, ER-derived phospholipids such as PE and PI, while
recognized by some CD1-restricted T cells, also function as chaperone lipids to stabilize the CD1 groove and facilitate egress to the cell surface. Abbreviations: A.
fumigatus, Aspergillus fumigatus; B. burgdorferi, Borrelia burgdorferi; dNKT, diverse NKT; ER, endoplasmic reticulum; GalACer, galacturonosylceramide; GalCer,
galactosylceramide; GalDAG, galactosyldiacylglycerol; GlcDAG, glucosyldiacylglycerol; H. pylori, Helicobacter pylori; iGb3, isoglobotrihexosylceramide; iNKT, invariant
NKT; M. tuberculosis, Mycobacterium tuberculosis; NKT, natural killer T; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PPBF, phenyl
2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonate; S. pneumoniae, Streptococcus pneumoniae.
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Figure 3. Comparative Anatomy of the Semi-Invariant NKT Cell TCR//-GalCer–CD1d and Conventional
TCR/peptide–MHC Class I Ternary Structures. The interactions between human iNKTCR and its ligand, /-GalCer–
CD1d (left), as well as the interactions between a conventional human TCR and its antigen, peptide (as in Figure 1B)–HLA-
B*08:01 (right), are shown. Structures were generated by PyMol using the protein database IDs 3HUJ (left) [118] and 3SJV
(right) [119]. Abbreviations: /, TCR/; b, TCRb; b2m, b2-microglobulin; HLA, human leukocyte antigen; iNKT, invariant NKT
cell; MHC, major histocompatibility complex; NK, natural killer; TCR, T cell receptor.
[20] (Figure 4). In addition, some CD1 isoforms, especially CD1a, can exchange lipids at the cell
surface. While many lipids do not require any additional processing for their association with CD1
proteins, some antigens require trimming by intracellular or extracellular carbohydrate hydro-
lases or phospholipases. Lipid exchange in endosomal compartments, which may or may not
involve removal of spacer lipids, is facilitated by CD1e (in human but not mouse) or a variety of
LTPs, including several saposins and the GM2 activator protein [21].

CD1-Restricted T Cells
The analysis of CD1-restricted T cells has been greatly facilitated by the generation of CD1–lipid
tetramers, which are now available for all group 1 and 2 CD1 isoforms [13]. A general theme in
CD1-restricted T cell responses is a propensity for autoreactivity, which has been observed for
each of the CD1 isoforms [5,13]. CD1-restricted T cells may express /b or gd TCRs (Table 1), and
include CD4+, CD8+ and double-negative cells [5,13,22]. Most studies on group 1 CD1-
restricted T cells have focused on TCRs reactive with self- or mycobacterial antigens [5,13]. T cells
with reactivity against mycobacterial antigens are enriched in tuberculosis patients, and many of
these cells have cytotoxic properties. With the exception of some CD1b-restricted T cells, group 1
CD1-restricted TCR/b+ T cells express diverse TCRs and exhibit adaptive-like effector functions
similar to those of conventional MHC-restricted T cells [5,13]. The majority of CD1d-restricted T
cells express natural killer (NK) cell surface markers such as NK1.1 (in mice) and are referred to as
natural killer T (NKT) cells [23,24] (Table 1). One subset of NKT cells, known as type I NKT cells or
invariant NKT (iNKT) cells, express TCR/ chains that are germline encoded, whereas a second
subset of NKT cells, known as type II NKT cells, diverse NKT (dNKT) cells, or variant NKT cells,
express relatively diverse TCRs. In this review article we will refer to these subsets as iNKT and
dNKT cells. NKT cells recognize a variety of endogenous and exogenous lipid antigens, and
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individual heavy chains are indicated in other colors) in the ER are stabilized by a variety of chaperones (CNX, ERp57, and CRT) and assemble with b2m and ER-derived
chaperone lipids that are loaded onto CD1 with the assistance of the lipid-transfer protein (LTP) MTP. CD1–lipid complexes then transit to the cell surface, except for
CD1e, which is directly transported to endosomal compartments, where it is cleaved into a soluble form. Following their arrival at the cell surface, CD1 proteins are
internalized via their cytoplasmic, tyrosine-based sorting motifs that interact with AP2 (CD1b-d) and AP3 (CD1b and mCD1d) complexes, which permit CD1 proteins
access to distinct intracellular compartments. CD1a, which lacks AP2 and AP3 sorting motifs, only accesses early endosomes in an AP-independent manner. ER-
resident CD1d proteins may also gain access to endolysosomal compartments via an auxiliary pathway that involves the MHC class II-associated invariant chain (not
depicted). In the endocytic system, CD1 proteins are loaded with endogenous or exogenous (e.g., microbial) lipid antigens, with the assistance of a variety of LTPs such
as CD1e, SAPs, and GM2A. CD1 antigens may be delivered to these intracellular compartments via extracellular lipid-binding proteins such as VLDL and FAAH, followed
by receptor-mediated uptake via a variety of receptors such as the mannose and LDL receptors. Some products also require processing into antigenic ligands via
extracellular factors such as PLA2 or intracellular factors such as lipid or carbohydrate Hy. Following loading with lipid in intracellular compartments, CD1–lipid complexes
recycle back to the cell surface. Note that most antigen-presenting CD1 isoforms can also be loaded with some antigens at the cell surface (not depicted). Abbreviations:
AP, adaptor protein; CNX, calnexin; CRT, calreticulin; ER, endoplasmic reticulum; FAAH, fatty acid amide hydrolase; GM2A, GM2 activator; HC, heavy chain; hCD1d,
human CD1d; Hy, hydrolase; LDLR, low-density lipoprotein receptor; mCD1d, mouse CD1d; MHC, major histocompatibility complex; MR, mannose receptor; b2m, b2-
microglobulin; MTP, microsomal triglyceride protein; PLA2, phospholipase A2; SAP, saposin; VLDL, very low density lipoprotein.
exhibit innate-like effector functions, with complementary although sometimes opposing roles.
One common feature of the CD1 antigen recognition system is that, in addition to TCRs with
exquisite antigen-specificity, TCRs with limited or no antigen-specificity and a heavy bias towards
the recognition of CD1 alone are frequently observed. The latter property is consistent with the
finding that this recognition system frequently involves reactivity of individual TCRs against both
self- and foreign antigens. In addition to TCR-mediated activation, CD1-restricted T cells are also
highly responsive to innate cytokine signals, even in the absence of TCR engagement [24–26], in
this respect behaving similarly to innate lymphoid cells.
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CD1a
Like the other CD1 isotypes, CD1a is expressed by myeloid APCs, but is especially abundant on
epidermal Langerhans cells, and is employed as a characteristic cell marker for this cell type in
humans [5,13]. CD1a-restricted T cells have been identified that react with antigens derived from
mycobacteria, pollen, and endogenous skin oils [27–29]. Although autoreactivity is a common
feature of CD1-restricted T cells, this is particularly the case for CD1a-restricted T cells [30]. The
latter finding is consistent with the capacity of the CD1a groove to accommodate a large variety
of antigens [8]. CD1a has the smallest antigen-binding groove of all CD1 proteins and can
accommodate not only lipids with polar headgroups, such as sulfatide, but also ‘head-less’
hydrophobic lipids such as skin-derived squalene, wax esters, and triacylglycerides [8,12,31].
CD1a-restricted T cells reactive with both types of lipid antigen have been identified. Because
the TCRs reactive with lipids containing polar headgroups are usually very sensitive to head-
group modifications, it has been suggested that such TCRs interact with both CD1a and lipid,
consistent with the classical concept of dual recognition of both MHC and antigen by TCRs. This
mode of recognition contrasts sharply with that of CD1a-restricted TCRs to lipids that lack polar
headgroups. Crystallographic studies of an autoreactive TCR showed that it interacted with the
A0 roof of CD1a in an asymmetric, left-sided manner but did not contact the lipid antigen in
the groove [30]. It was proposed that in those cases the lipid largely plays a CD1a-stabilizing role
without directly contributing to TCR interactions and that it is therefore not an antigen in the strict
sense but rather a permissive ligand. Such a recognition mode, which is likely common among
autoreactive CD1a-restricted T cells, might be able to accommodate a variety of lipids that can
stabilize the CD1a groove and activate the TCR, provided that their headgroups do not interfere
with the capacity of the TCR to dock onto the A0 roof of the CD1a groove. Indeed, permissive
lipids for this autoreactive TCR include phospholipids, lysophosphatidylcholine (lyso-PC), and
fatty acids that lack polar headgroups, whereas non-permissive lipids include sphingomyelin and
sulfatide that contain polar headgroups [8,12,31].

CD1a is the only antigen-presenting CD1 isoform that lacks a tyrosine-based sorting motif for
internalization into endosomes [5]. Its localization is therefore restricted to the cell surface and
early endosomal compartments with a pH close to neutral. CD1a is relatively stable in the
absence of bound lipid and can exchange lipids at the cell surface, without the need for
additional accessory factors. Recent studies have provided evidence that the permissive free
fatty acids that stabilize the CD1a groove for recognition by autoreactive CD1a-restricted TCRs
are generated from common skin phospholipids via endogenous or exogenous phospholipase
A2 (PLA2) action [28,31–33].

Among the CD1a-restricted T cells, the autoreactive T cells in the skin have been characterized
most extensively [31]. These cells are present in the dermis of the skin and are thus physically
separated from the CD1a-expressing Langerhans cells in the epidermis. These T cells exhibit
autoreactivity against hydrophobic skin lipids such as squalene, fatty acids, and wax esters.
These lipids are contained within skin sebum, which is produced by sebaceous glands and exits
the skin via hair follicles to coat the outer layer of the epidermis. Thus, access of these lipids to
CD1a-expressing Langerhans cells and CD1a-restricted T cells requires a skin breach via
infection or injury. Recent studies have suggested that endogenous PLA2 secreted by skin
cells may be involved in processing ubiquitous skin phospholipids into the natural oils recognized
by CD1a-reactive T cells [33]. This possibility was suggested by a provocative study showing
that PLA2 in insect venom, when introduced into the dermis of the skin, can convert phos-
pholipids into CD1a-binding fatty acids that are capable of activating autoreactive CD1a-
restricted T cells [32]. Consistent with this finding, CD1a-restricted T cells were expanded in
individuals allergic to bee and wasp venom [34]. Autoreactive CD1a-restricted T cells produce
the cytokines IFN-g and IL-22 [28] which contribute to antimicrobial defenses, keratinocyte
proliferation, and a variety of skin inflammatory diseases. In this manner, CD1a-reactive T cells
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might be able to respond quickly to tissue injury, infectious agents, and venoms by promoting
antimicrobial and inflammatory responses. Consequently, this pathway may be exploited for
therapeutic purposes against a variety of diseases. In this context it is interesting that several skin
pathobionts, including the fungal organism Candida albicans and the bacterial organism
Staphylococcus aureus, secrete phospholipases, which may thus contribute to the generation
of stimulatory ligands for CD1a-reactive T cells. In addition, some vaccine adjuvants contain
squalene or other oils that may be able to activate CD1a-restricted T cells, thus potentially
contributing to adjuvanticity. In addition to skin-derived self-lipids, CD1a-restricted T cells
reactive with mycobacterial and pollen-derived lipids have also been identified [29], although
their physiological function requires further study.

CD1b
Apart from thymocytes, CD1b is nearly exclusively expressed by dendritic cells (DCs). Autor-
eactive and pathogen-reactive CD1b-restricted T cells have been identified [5,13]. CD1b has the
largest binding groove of all CD1 proteins and contains four interconnected pockets (A0, C0, F0,
and T0). This permits CD1b to bind to lipids containing long alkyl chains such as mycobacterial
mycolic acid, glucose monomycolate, and glycerol monomycolate [8,12]. In addition, shorter
lipids such as mycobacterial sulfoglycolipids and a short-chain form of glucose monomycolate
can be loaded onto CD1b in the presence of a spacer lipid, a diacylglycerol, or a deoxyceramide
(see chemical structures in Figure 2) [16]. Such natural spacer lipids in CD1b push the groove
upwards to enhance antigen recognition, and thus function as scaffolds to support the TCR/
CD1b–lipid interface. This concept is consistent with the finding that long-chain glucose
monomycolate requires the low pH environment of lysosomes for lipid exchange, whereas
short-chain monomycolate can be loaded at the cell surface [8,12]. Presumably, the former type
of lipid exchange involves release of either a large ER-derived lipid, or a short ER-derived lipid
together with a spacer lipid, whereas the latter type of lipid exchange may involve release of only
the short ER-derived lipid while the spacer lipid remains bound with CD1b.

Although most CD1b-restricted T cells express diverse TCRs, subsets of glucose monomy-
colate-reactive T cells expressing semi-invariant [termed germline-encoded mycolyl (GEM) lipid-
reactive T cells] [35] or biased (termed LDN5-like T cells) [36] TCRs have been identified (Table 1).
Among all CD1-restricted T cells that recognize mycobacterial antigens, CD1b-restricted T cells
are most abundant [5]. Such cells are enriched in peripheral blood and at sites of infection in
tuberculosis patients [37]. These cells exhibit cytotoxic activities and produce a variety of
cytokines such as IL-2 and IFN-g [37]. Recent studies with humanized transgenic animals
expressing all human group 1 CD1 proteins together with a mycolic acid-specific CD1b-
restricted TCR have provided the first convincing evidence for rapid and protective host immune
responses mediated by the CD1 antigen-presentation system [38]. This rapid response to
Mycobacterium tuberculosis infection suggests that this system can be targeted for the
development of tuberculosis vaccines.

The recent analysis of a set of autoreactive CD1b-restricted T cells revealed reactivity against
phosphatidylglycerol (PG) produced by mitochondria as well as by several different bacterial
pathogens such as Salmonella and Staphylococcus spp. [39]. Thus, these cells exhibit mixed
reactivity against self- and foreign antigens. These findings also provide evidence for a much
broader reactivity of CD1-reactive T cells to bacterial pathogens, and suggest a role for these
cells in settings such as metabolic diseases that are associated with mitochondrial stress.

CD1c
CD1c is abundantly expressed by myeloid DCs and B cells, especially marginal zone B cells.
CD1c-restricted /b and gd T cells that react with endogenous sulfatides or cholesteryl esters, or
with mycobacterial cell-wall antigens, have been identified [5,13,40,41]. Each of the exogenous
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CD1c antigens identified–phosphomycoketide, mannosyl-phosphomycoketide, and a synthetic
lipopeptide (acyl-12)–contain a single alkyl chain which is embedded in the A0 pocket [17,42]. In
one of the CD1c-lipid co-crystals, the F0 pocket contained a C12-hydrocarbon chain likely
derived from a detergent in the solution used during crystallization [17]. This finding suggests that
spacer lipids are involved in the CD1c-mediated presentation of lipid antigens containing a single
alkyl chain.

CD1c-reactive T cells have been identified in human blood, expand in patients with tuberculosis,
and infiltrate organs affected by autoimmunity [5]. Although CD1c-restricted gd T cells were
identified over 25 years ago, the natural ligands of Vd1+ TCRs have only recently been identified
as mycobacterial phosphomycoketides [43]. Strikingly, these gd T cells also reacted with diverse
lipids, including lyso-PC, sulfatide, and mannosyl-phosphomycoketide, which is consistent with
a dominant role for TCR interactions with CD1c and with the concept of mixed self- and foreign
antigen reactivity often observed in the CD1 system. Although the available evidence is highly
suggestive of functions in infection and autoimmunity, this has not yet been conclusively
demonstrated.

CD1d
In contrast to group 1 CD1 proteins, whose expression is limited to hematopoietic cells, CD1d is
expressed more widely by both hematopoietic and non-hematopoietic cells, including thymo-
cytes, professional APCs, hepatocytes, hepatic stellate cells, intestinal epithelial cells, and
adipocytes, and is particularly abundant on marginal zone B cells [6,44]. CD1d can present a
variety of glycosphingolipids, diacylglycerols, phospholipids, lipopeptides, ether lipids, non-lipid
small molecules, and possibly even peptides to CD1d-restricted cells [8,13,24,31,45–48].
Exogenous antigens recognized by iNKT cells include lipids derived from ubiquitous environ-
mental bacteria, pathogenic bacteria, fungi, commensal bacteria, and pollen. Much of our
understanding of iNKT cell biology has been gleaned from studies with KRN7000, a synthetically
optimized version of an /-galactosylceramide (/-GalCer), agelasphin 9b, derived from the
marine sponge Agelas mauritianus [49,50]. Several microbes, including the commensal bacte-
rium Bacteroides fragilis [51,52] and the fungal pathogen Aspergillus fumigatus [53], a common
cause of airway hypersensitivity, contain iNKT cell-stimulating /-GalCers. These findings also
suggest that agelasphin 9b is derived from commensal organisms associated with the marine
sponge, rather than from the sponge itself. Other microbial iNKT cell agonists include /-gly-
curonosylceramides from Sphingomonas bacteria [54–56], diacylglycerols from Streptococcus
pneumoniae [57] and the Lyme disease agent Borrelia burgdorferi [58], and cholesteryl /-gluco-
sides from Helicobacter pylori [59], a common agent of stomach ulcers and gastric cancer.
Endogenous antigens recognized by iNKT cells include /- and b-linked GalCers and gluco-
sylceramides (GlcCers), isoglobotrihexosylceramide (iGb3), ganglioside D3 (GD3), ether-
bonded lipids, and glycerophospholipids such as phosphatidylinositol (PI), phosphatidyletha-
nolamine (PE), and lyso-PC [24]. Antigens recognized by subsets of dNKT cells include
endogenous sulfatide, lysophospholipids, lyso-PC, b-glycosylceramides (b-GlyCers), and bac-
teria-derived PG, di-PG (cardiolipin), and PI [60–62]. In addition to lipid-reactivity, CD1d-
restricted T cells have been identified that react with synthetic, non-lipidic phenyl pentame-
thyldihydrobenzofuran sulfonates (PPBF) [63]. While provocative, the functional significance of
this type of reactivity remains unknown.

Crystal structures of human or mouse CD1d complexed with a variety of ligands have been
analyzed [8,24]. The fatty-acyl chain of /-GalCer binds within the large A0 pocket of CD1d
whereas the sphingosine chain fits within the F0 pocket, with the galactosyl head extending out of
the groove [64,65] (Figure 1B, left). Other NKT cell antigens, including b-GlyCer, sulfatide, iGb3,
phosphoglycerolipids, and microbial diacylglycerols, bind to CD1d in the same conserved
manner. In the case of diacylglycerols, however, the acyl chains can bind to CD1d in two
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different orientations, with the individual chains positioned within either the A0 or F0 pockets,
which has a major impact on TCR recognition. The sugar headgroups of /-linked glycolipids
that extend out of the CD1d groove adopt a similar orientation such that they are easily
accessible by the TCR. In sharp contrast, the headgroups of the b-linked glycolipids project
up and away from the CD1d groove. Co-crystals of TCR/CD1d–lipid complexes have revealed
that, in sharp contrast to MHC- and group 1 CD1-restricted TCRs, the iNKT cell TCR (iNKTCR)
docks parallel onto the CD1d groove, with most of the interface being dominated by the
germline-encoded TCR/ chain (Figure 3) [1,8,24,66]. To maintain this conserved footprint,
the TCR was able to induce structural changes in both CD1d and the orientation of the ligand.
For example, the iNKTCR interacted with CD1d–b-GlcCer and CD1d–iGb3 complexes by
flattening the sugars that protrude out of the antigen-binding groove [67,68]. Interestingly,
the structure of a dNKTCR complexed with CD1d–lysosulfatide revealed a diagonal footprint
similar to that of TCR/MHC–peptide complexes, with lysosulfatide being recognized exclusively
by the TCRb chain [69], thus revealing features of recognition similar to iNKT cells and
conventional peptide-reactive T cells.

Like the group 1 CD1 proteins, CD1d assembles in the ER where it is stabilized by chaperone
lipids that have been identified as phospholipids, which are rarely recognized by NKT cells
[19,24,60]. Association with ER-derived chaperone lipids is catalyzed by MTP. Following display
at the cell surface, CD1d is internalized via its tyrosine-based sorting motif and enters endosomal
and lysosomal compartments. While some autoreactive CD1d-restricted T cells recognize
antigens that do not require CD1d internalization, and /-GalCer can be loaded directly onto
CD1d at the cell surface, most CD1d antigens are acquired in endocytic compartments. An
alternative, auxiliary pathway for CD1d to arrive in these intracellular structures is via association
with the MHC class II-associated invariant chain [70]. In these intracellular compartments, CD1d
binds to lipids with the assistance of LTPs, including saposins A-D, GM2 activator, Niemann–
Pick type C2 protein, and thymocyte-derived cathepsin L. Delivery of antigens to these compart-
ments may involve extracellular lipid-binding proteins such as apolipoprotein E-containing VLDL
and fatty-acid amide hydrolase (FAAH), and receptor-mediated entry via lipid receptors such as
the low-density lipoprotein receptor (LDLR) or lectin receptors such as the mannose receptor
[20]. Several precursors to CD1d-presented antigens require processing by carbohydrate
hydrolases or phospholipases. For example, in the case of CD1d-restricted T cells in the liver
that respond to hepatitis B virus infection, antigenic ER lipids such as lyso-PE were generated
from ubiquitous phospholipids via secretory PLA2 [71]. In addition, lysosomal PLA2 was shown
to be required for the intrathymic development of iNKT cells and for the presentation of
endogenous antigens by CD1d [72].

A topic of controversy in the NKT cell field that remains to be fully resolved is the identity of the
natural self-antigen(s) that mediate the intrathymic development and peripheral functions of iNKT
cells [24]. For many years it was thought that iNKT cells selectively react with /-linked
glycosphingolipids, which was unanticipated in the context of the common belief that mamma-
lian cells only produce b-linked glycosphingolipids. A first surprise was that cells deficient in
b-GlcCer synthase were unable to activate autoreactive mouse iNKT cell hybridomas [73].
Subsequent studies provided evidence that b-GlyCer may be recognized by iNKT cells, which
was supported by X-ray crystallographic studies [68], but the synthetic preparations used in
these studies appeared to contain minute amounts of /-linked GlyCers. A second surprise was
the identification of the endogenous, lysosomal b-linked glycosphingolipid iGb3 as a weak iNKT
cell agonist [74]. However, human cells do not produce iGb3, and the lack of an iNKT cell
phenotype in iGb3 synthase-deficient mice [75] raised doubt about the physiological relevance
of iGb3 to iNKT cell function. The final surprise came when two research groups performed a
variety of elegant biochemical and structural analyses of lipid preparations that were able to
stimulate autoreactive iNKT cells [76–78]. These studies provided strong evidence for
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/-GlcCers and /-GalCers–not thought to be present in mammalian cells–as natural iNKT cell
ligands. The minute amounts of these antigens produced by mammals were likely overlooked in
previous studies, but their low prevalence is consistent with the physiological functions of iNKT
cells. The nature of the enzymatic activities involved in the generation of mammalian /-linked
GlyCers and how these activities are controlled during normal and pathological conditions
remain to be elucidated. While current evidence indicates that these /-GlyCers control the
physiological functions of iNKT cells in the periphery, they do not appear to be required for the
intrathymic development of these cells. Instead, one study provided evidence for the involve-
ment of peroxisome-derived, ether-bonded lipids in the intrathymic development of iNKT cells
[79]. If and how the requirement of lysosomal PLA2 activity for iNKT cell development [72] aligns
with these findings remains to be determined.

As already noted, NKT cells are CD1d-restricted T cells that coexpress lipid-reactive /b (or gd)
TCRs together with NK cell markers [6,23,44,47,80]. iNKT cells express TCRs composed of an
invariant TCR/ chain (V/14–J/18 in mouse or V/24–J/18 in human) and a restricted set of
TCRb chains that react with /-GalCer. These cells are substantially more abundant in mice than
humans, and their numbers vary widely among different human subjects. iNKT cells are most
prevalent in liver and are also abundant in spleen, peripheral blood, bone marrow, thymus, and
mucosal tissues in gut and lung. Apart from V/14+ NKT cells, an additional subset of /-GalCer-
reactive NKT cells have been identified that express a unique V/10–J/50 TCR/ chain in mice
[81]. Strikingly, the latter cells exhibited greater reactivity to /-GlcCer and also reacted with
mycobacterial /-glucuronosyldiacylglycerol (/-GlcADAG), suggesting important functions.
iNKT cells express the innate master transcription factor promyelocytic leukemia zinc finger
(PLZF), exhibit cytotoxic activities, and can produce a wide variety of cytokines. Subsets of iNKT
cells with specialized effector functions similar to the diverse properties of adaptive CD4+ helper
T cell subsets have been identified, and these include NKT1 cells producing IFN-g (and IL-4),
NKT2 cells producing IL-4 and IL-13, NKT10 cells producing the immunosuppressive cytokine
IL-10, NKT17 cells producing IL-17a, and follicular helper NKT cells producing IL-21 [24,82,83].
These iNKT cell subsets are selectively enriched in distinct organs and tissues. Consequently,
iNKT cells can influence the functions of a variety of innate and adaptive immune cells. These
cells rapidly elicit their broad effector functions following stimulation with /-GalCer and, instead
of developing immune memory, become unresponsive to antigen restimulation because they
acquire an anergic and regulatory phenotype [23,84,85]. The functions of iNKT cells span the
entire range of the immune response, including host defense against pathogens, autoimmunity,
tissue graft rejection, hypersensitivities, tumor immunity, and metabolic disease [5,6,23,24,44].
The role of iNKT cells in immune responses against pathogens is not limited to organisms
containing natural iNKT cell antigens but extends to many organisms such as viruses that lack
cognate iNKT cell antigens. For such pathogens, iNKT cells are activated in response to innate
cytokine signals, in the presence or absence of TCR signaling via autoantigens [26]. In fact, one
study provided evidence that the response of iNKT cells to pathogens is dominated by innate
cytokines, even for those pathogens containing cognate iNKT cell antigens [86]. The role of
CD1d-restricted T cell responses against pathogenic organisms is underscored by evasion
mechanisms that are employed by multiple pathogens to subvert CD1d-restricted antigen
presentation [87]. Studies over the past several years have further shown that iNKT cells
influence the composition of the natural gut microbiota and, conversely, that members of
the microbiota such as Bacteroides fragilis that contain iNKT cell antigens shape iNKT cell
effector functions [51,88]. This dynamic interaction between iNKT cells and the microbiota may
have major consequences for human health, raising the possibility of preventing the develop-
ment of diseases such as asthma and inflammatory bowel disease by administering neonates
with probiotics that influence iNKT cell function [89]. iNKT cell agonists such as /-GalCer have
been extensively employed to explore the adjuvant and therapeutic activities of iNKT cells, with
promising preclinical studies for some tumors, infectious agents, and autoimmune diseases, and
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some encouraging findings with cancer patients [49,90,91]. Nevertheless, inducing biological
responses of iNKT cells in humans has proved to be challenging, and the potential for generating
adverse effects rather than protecting against disease remains an important concern.

In contrast to iNKT cells, dNKT cells do not typically react with /-GalCer and most of these cells
express diverse TCRs [13,47,80]. Nevertheless, the subset of sulfatide-reactive dNKT cells
contains populations with biased TCRs. Importantly, dNKT cells are more prevalent in humans
than in mice. Like iNKT cells, dNKT cells express PLZF [92], exhibit innate-like functions, and can
influence a wide variety of immune responses [47,93,94]. An interesting phenomenon is that
dNKT cells often oppose the functions of iNKT cells [95]. For example, while iNKT cells exhibit
natural immunity against some metastatic cancers, dNKT cells have a propensity to promote
cancer growth [96]. Preclinical studies with sulfatide have provided promising results with several
autoimmune diseases, raising the possibility of developing dNKT cell-based immunotherapies
for human diseases.

Recently, a subset of human dNKT cells termed ‘atypical NKT cells’ expressing diverse
/-GalCer-reactive TCRs has been identified [97]. While the functions of these cells remain
unclear, crystal structures of two of these TCRs bound with CD1d–/-GalCer complexes
revealed orthogonal binding over the A0 pocket of CD1d, contrasting sharply with the docking
mode of iNKTCRs [97].

A recent provocative report [98] has renewed interest in the possibility that CD1d-restricted T cells
can react with peptides, a notion that has been entertained for over 20 years. Early studies
provided evidence that mouse CD1d can present a variety of hydrophobic synthetic peptides with
the common motif [FW]-X-X-[ILM]-X-X-W to CD1d-restricted T cells [99]. Subsequent studies
identified CD1d-restricted CD8+ T cells reactive with peptides from the model antigen ovalbumin
[100,101]. However, owing to difficulties in understanding the molecular basis of peptide recog-
nition and the preponderance of lipid-reactivity among CD1d-restricted T cells, the issue of
peptide-reactivity was largely put to rest. A more recent study reported CD1d-restricted recogni-
tion of a collagen-derived peptide by CD4+ T cells [102], but its molecular basis was unclear. Until
the recent study by Girardi et al. [98], the exact location of peptide binding to CD1d remained
elusive. These investigators determined the crystal structure of the complex between mouse
CD1d and the first peptide identified to bind CD1d, synthetic p99. This peptide adopts an /-helical
conformation in the CD1d groove that orients the motif residues towards the bottom of the groove,
in a manner consistent with its presentation to TCRs. Although the functions of peptide-reactive
dNKT cells remain to be determined, it is striking that the CD1d peptide motif is contained within
peptides derived from several viruses such as HIV [103], suggesting potential antiviral functions. In
addition, studies with the CD1d-binding, collagen-derived peptide have provided evidence for
potent immune-modulatory activities of peptide-reactive, CD1d-restricted T cells [102].

CD1e
CD1e is expressed by thymocytes and DCs. As already noted, CD1e is only expressed
intracellularly and does not function as an antigen-presenting molecule [5]. Instead, mem-
brane-anchored CD1e is transported to endolysosomal compartments where it is cleaved into
soluble proteins (Figure 4). CD1e is a lipid-binding protein with a wide, solvent-exposed antigen-
binding groove that includes contiguous A0 and F0 pockets [104]. CD1e modulates the presen-
tation of endogenous and exogenous lipids by human CD1b, CD1c, and CD1d, and this has
been proposed to reflect its capacity to accelerate the generation and dissociation of CD1–lipid
complexes [105]. In addition, CD1e has been suggested to assist lysosomal /-mannosidase in
the processing of mycobacterial lipids into antigenic CD1b ligands [106]. In this manner, CD1e
might influence both lipid availability and the generation and persistence of CD1–lipid
complexes.
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Outstanding Questions
From a structural perspective, how do
CD1 proteins bind to chemically
diverse ligands, including lipids, non-
lipidic small molecules, and even pep-
tides? How can CD1-restricted TCRs
engage such diverse CD1–antigen
complexes?

What are the mechanisms that control
the activities and functions of CD1-
restricted T cells which exhibit mixed
reactivity against self- and foreign
antigens?

Does the range of microbial products
recognized by group 1 CD1-restricted
T cells extend much beyond mycobac-
terial cell-wall products?

Is the prevalence and function of group
1 CD1-restricted T cells influenced by
environmental mycobacteria or com-
mensal microorganisms?
Concluding Remarks and Future Perspectives
The studies reviewed here highlight the emergence of the CD1 antigen-presentation system as
an important complement to the classical MHC antigen-presentation system in health and
disease. Recent studies have provided new insight into this system by identifying novel cognate
antigens and the factors involved in the generation and processing of antigens. These studies
have also revived the idea that CD1d can present peptide antigens to T cells. We now
understand in some depth how distinct antigens bind to individual CD1 isoforms, and this
not only involves antigenic lipids but also lipids that function as chaperones, spacers, and
scaffolds. TCRs engage CD1–antigen complexes with footprints that exhibit a surprising amount
of diversity. While significant progress has been made regarding the effector functions and
immunological properties of CD1-restricted T cells, many questions remain to be addressed (see
Outstanding Questions) before this fascinating antigen-presentation system can be fully
exploited for the development of vaccines and immune therapies.
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