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Once a burgeoning field of study, over the past decade or so,

T cell epitope discovery has lost some luster. The contributory

factors perchance are the general notion that any newly

discovered epitope will reveal very little about an immune

response and that knowledge of epitopes are less critical for

vaccine design. Despite these notions, the breadth and depth

of T cell epitopes derived from clinically important microbial

agents of human diseases largely remain ill defined. We review

here a flurry of recent reports that have rebirthed the field.

These reports reveal that epitope discovery is an essential step

toward rational vaccine design and critical for monitoring

vaccination efficacy. The new findings also indicate that neither

immunogenicity nor immunodominance predict protective

immunity. Hence, an immunogenic epitope is but a peptide

unless proven protective against disease.

Addresses
1 Veterans Administration Tennessee Valley Healthcare System,

Vanderbilt University, Nashville, TN 37332, USA
2 Department of Pathology, Microbiology and Immunology, School of

Medicine, Vanderbilt University, Nashville, TN 37332, USA
3 Department of Chemical & Biomolecular Engineering, School of

Engineering, Vanderbilt University, Nashville, TN 37332, USA

Corresponding author: Joyce, Sebastian

(sebastian.joyce@vanderbilt.edu)

Current Opinion in Immunology 2015, 34:43–51

This review comes from a themed issue on Antigen processing

Edited by Nilabh Shastri and Jonathan Yewdell

http://dx.doi.org/10.1016/j.coi.2015.01.013

0952-7915/# 2015 Published by Elsevier Ltd.

Introduction: prevention is better than cure
We all agree with the age-old adage ‘prevention is better

than cure’. Vaccination has accomplished this for many

infectious diseases, thereby significantly reducing mor-

bidity and mortality. Yet several current scourges defy our

best efforts at effective vaccine development. The poor

success of the much anticipated vaccine trials against

human immunodeficiency virus/acquired immunodefi-

ciency disease syndrome (HIV/AIDS), tuberculosis

(TB) and malaria causes pause to re-think strategies for

knowledge-based vaccine design and vaccination. Even
www.sciencedirect.com 
though many agree that an effective vaccine should target

both humoral and cellular arms of the adaptive immune

system, most effort is invested in vaccine-induced anti-

body-mediated protective immunity. Recent years have

seen increased focus on developing T cell-targeted vac-

cines. T cell-targeted vaccine development poses two

technical challenges: one pertains to difficulties associat-

ed with the discovery of critical T cell targets comprised

of microbial epitopes that are efficiently and abundantly

presented during a natural infection. Another challenge

pertains to defining protective epitopes in humans, which

in most cases can be learnt only by indirect approaches

that include protection studies in surrogate animal models

and/or establishing correlates of protection in humans.

Knowledge of such protective epitopes will facilitate the

design of novel vaccines and the generation of critical

reagents to track the host T cell response to vaccines in

real time.

Refinement of existing techniques and/or the develop-

ment of newer methods enhance studies of biologic

processes with increased sensitivity, specificity and

reproducibility. Since the revelation that MHC restric-

tion entailed intracellular processing of proteins to

short peptides and their cell surface presentation by

MHC molecules to T cells, numerous approaches have

been developed to identify T cell epitopes [1�]. Herein

we briefly review a few of these approaches, starting

with the characterization of naturally processed epitopes

(Box 1) to the recent advances in proteogenomics

approaches for the discovery of alloreactive and tumor-

specific T cell epitopes.

Many ways to discover T cell epitopes

The different approaches to discover T cell epitopes have

been reviewed recently [1�] and, hence, not all are bela-

bored here. The most popular of these is algorithm-based

epitope prediction coupled with biochemical and immu-

nologic validation. From the large collection of all known

MHC-restricted peptides and epitopes deposited in the

Immune Epitope Data Base (IEDB: [27�]) and SYF-

PEITHI [28�], epitope prediction algorithms have been

developed. NetMHC-3.0 — an artificial neural networks-

based prediction algorithm — allows rapid identification of

microbial T cell epitopes [29�]. Epitope prediction is high-

throughput and effective for microbes with small pro-

teomes such as those of viruses the largest of which express

�250–300 open reading frames (ORFs). Experiments
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Box 1 A walk down memory lane with Stan Nathenson et alii

The 1980s and 1990s were exciting times for students of antigen

processing and presentation and T cell biology. By this time

immunologists and geneticists had established that the antigen(s)

coded by the Major histocompatibility complex (Mhc) controlled

allogeneic skin and tumor graft rejection both in mice and men

[2�,3��]. As well, the 1970s witnessed the first descriptions of MHC

restriction [4��,5��] — a process that controlled host T and B cell

responses to proteins, viruses, and bacteria. These two seemingly

distinct immunologic recognition processes needed a biochemical

definition. By the late 1970s and early 1980s, Nathenson and

colleagues had devised ways to cleave MHC class I molecules

from cell surfaces and adapted a radiochemical method which,

coupled with Edman degradation, unveiled the first primary

structure of his favorite MHC molecule — H2-Kb. Immediately

thereafter, primary structures of several other MHC molecules

were determined [6��,7��].

Having unraveled the primary structures of several mouse and

human MHC class I and class II molecules, the stage was set to

elucidate the biochemical basis of MHC restriction. Prior to this, from

the works of Unanue and colleagues, it was known that the activities

of T lymphocytes were intimately linked to their interactions with

macrophages, whose purpose was to process antigens

[8��,9��,10��]. So also, it was known that nucleo-cytoplasmic

proteins, notably the SV40 T antigen and influenza A nucleoprotein

and derived peptides, or proteins deliberately delivered to the

cytosol by fusion of non-replicative influenza A virus or by osmotic

shock (e.g., ovalbumin) were targets of class I-restricted CD8 T cells

[11��,12��,13��,14��,15��]. The in vitro binding studies that followed

[16��,17��] and the solution of the three-dimensional structure of an

HLA class I molecule — HLA-A*02;01 [18��,19��], revealed that the

MHC was a receptor for processed peptides with a single binding

site. The question now became, what sorts of peptides do MHC

molecules bind and display to T cells in vivo? This was a burning

question for MHC and T cell enthusiasts in the mid to late 1980s and

early 1990s.

The radiochemical approach — invented to determine the amino

acid sequences of peptides and proteins that were available in

limited quantities [7��] — returned yet another time to unveil the

biology of MHC molecules. The first three-dimensional structure of

A*02;01 had revealed that the binding site was occupied by a

conglomerate of ligands whose identities eluded Bjorkman, Stro-

minger, Wiley and colleagues [18��]. The general notion was that not

a few or several but numerous peptides were bound in that A*02;01

antigen-binding groove indicating that the isolation of associated

ligands in sufficient quantities to permit amino acid sequence

determination by Edman method would be challenging. Hence,

Nathenson and Grada Van Bleek reasoned that if cells infected with a

virus that shuts off host protein synthesis (a la vesicular stomatitis

virus, VSV) were tagged with radiolabelled amino acids, the tag

would get incorporated into newly synthesized viral proteins. The

peptides processed from the radiolabelled viral proteins would then

be available for binding to MHC class I molecules. Such peptides

could then be isolated from the restricting class I molecule and

subjected to Edman sequencing. Indeed, the skilled execution of this

experiment revealed one of the first naturally processed peptide

antigens isolated from an MHC molecule: the VSV N protein-derived

RGYVYQGL [20��]! Concurrently, Rammenssee and colleagues

deploying a completely different approach, had extracted specific

influenza virus-derived peptides from whole infected cells and

determined the identities of the two distinct peptides that were

presented by H2-Kd and H2-Db molecules [21��,22��,23��,24��]. All of

these studies culminated in a molecular definition of MHC restriction.

These initial reports were shortly followed by direct sequencing of

individual peptides eluted from MHC with the aid of mass spectro-

metry [25��,26��]. Advances in mass spectrometers and proteomics

technologies and platforms have since paved the way to directly

elucidate the amino acid sequences of antigenic peptides. The

nature of naturally processed peptide antigens derived from

numerous re-emerging and newly emerging pathogens — for

example, Dengue, Marburg, Ebola, Mycobacterium tuberculosis,

Plasmodium vivax, and P. falciparum — yet remains. This knowl-

edge is a prerequisite to track protective immunity in experimental

models and in vaccine trials.
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using the power and rapidity of predictive algorithms

coupled with T cell-based validation have resulted in

the discovery of numerous putative and confirmed im-

mune epitopes that are deposited in the IEDB.

Whilst algorithms rapidly predict T cell epitopes, it

neither predicts whether such peptides are presented

during a natural infection nor their immunogenicity un-

less empirically determined [30–32]. The development of

several transgenic (tg) mice expressing major HLA class I

alleles [33��] provides a preclinical, small animal model to

validate the immunologic properties of the putative epi-

topes [30,34�]. Comparative analysis showed that there is

some but not complete overlap between CD8 T cell

epitopes recognized by immune HLA tg mouse and

vaccinated volunteers, suggesting that with some limita-

tions, such a model is suitable for studying HLA class I

restricted immune epitopes [34�,35].

Discovery of T cell epitopes from larger microbes such as

M. tuberculosis and Plasmodium spp. by using prediction

algorithms would be challenging because the expressed

genome of these microbes can encode �4000–6000 pro-

teins. Sette and colleagues have found that the smallpox

vaccine — that is, vaccinia virus (VACV), which encodes

�250 ORFs — yielded an unwieldy number of putative

epitopes that are homologous to variola proteome and are

presented by the six major HLA class I supertypes (see

Ref. [36]) using predictive IC50 algorithm. To narrow the

focus, a cut-off of the top ten best binding peptides per

VACV protein per supertype was set, thereby yielding

�6055 predicted epitopes. Of these, T cell-based valida-

tion unveiled 48 CD8 T cell epitopes recognized by

VACV-immunized volunteers [37]. Modeling on this

approach and scaling-up to account for the larger pro-

teomes of mycobacterium and plasmodium in comparison

to VACV, one would expect over one million putative

CD8 T cell epitopes. In actuality however, epitopes

presented by bacteria-infected or parasite-infected cells

would be expected to be narrower as compared to those

displayed upon viral infections ([38] and our unpublished

observation). This is perhaps because viruses translate

their ORFs and some their ARFs (alternate reading

frames) on host ribosomes. DRiPs (defective ribosomal

products) generated from the translation of ORFs and

ARFs are a substantial source of antigenic peptides

[39,40]. In contrast, bacteria and parasites translate their

genomes on their own ribosomes, wherein DRiPs may be
www.sciencedirect.com
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lost to rapid degradation and, hence, are unavailable for

presentation. This may explain why an earlier study

reported only three overlapping M. tuberculosis-derived

naturally processed epitopes [38]. Functional validation

of such a large number of predicted epitopes would

be challenging, requiring newer approaches that can

rapidly and precisely inform immune epitopes/vaccine

candidates.

In this regard it is noteworthy that several groups have

recently reported a proteogenomic approach that allows T

cell epitope discovery from species with large proteomes

such as ours and mice. This approach has led to the

discovery of several cancer-specific as well as minor

histocompatibility alloantigen-derived CD8 T cell epi-

topes [41��,42��,43��,44��,45��]. Proteogenomic approach

entails first defining the tumor transcriptome in relation-

ship to the same individual’s non-cancerous genome or

transcriptome in order to identify non-synonymous single

nucleotide polymorphisms (nsSNP). The translated mu-

tant proteome is subjected to T cell epitope prediction

using NetMHC-3.0. This information then allows the

search for variant peptides within the material eluted

from a given MHC molecule using the mass spectrometry

experiment called multiple reaction monitoring (MRM).

From the resulting naturally processed tumor epitopes,

immunogenicity was predicted in silico with both immu-

nogenicity and protection validated in vivo [41��,42��,
43��]. Or alternatively, the proteogenomics approach

can involve first an in-depth analysis of MHC associated

self peptidome or ligandome — the collection of peptides

derived from self proteins associated with a test MHC

molecule. The potential variation within each peptide

that is caused by nsSNP is ascertained from the genomes

or transcriptomes of allogeneic or cancer cells and vali-

dated in immunologic assays [44��,45��].

An adaptation of this approach would be to determine the

in vivo microbial transcriptome and/or proteome during a

natural infection — for example, the translated proteome

of pre-erythrocytic stage plasmodium induced within

infected hepatocytes — to focus in on proteins that con-

tain potential T cell epitopes [46]. Such an approach

combines the relative ease of transcriptome/proteome
Table 1

Summary of naturally processed CD8 T cell epitopes*

HLA Total peptide

sequences**
VACV derived

homologous to VARV

A*02;01 �2500 109 

B*07;02 �1200 65 

VACV, vaccinia virus; VARV, variola virus — the agent of smallpox.
* See Refs. [30,34�,37,49,51,52].
** Large majority were host cell-derived self-peptides. Peptides (our unpub
*** Common epitopes recognized by human and mouse CD8 T cells.
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determination, the rapidity of epitope prediction, and

the ever-increasing sensitivity of mass spectrometers

for the discovery of naturally processed T cell epitopes.

Many determinants are presented yet only a few are

recognized

Several T cell epitopes are known to emerge from a single

microbial protein. For example, the simian virus-40 (SV-

40) large T antigen contains one H2Kb-restricted and

three H2Db-restricted epitopes [47]. Similarly, multiple

T cell epitopes are known to emerge from a single

microbe; for example, several H2b-restricted epitopes

are presented during a natural influenza A virus (IAV)

infection of C57BL/6 mouse [48] and HLA-restricted

HIV epitopes (http://www.hiv.lanl.gov). Despite these

and numerous other similar studies (e.g. [30]) the breadth

and depth of microbial determinants displayed by an

MHC class I molecule remain unknown.

A few groups employed a proteomics approach to answer

this question: peptides associated with HLA class I

molecules expressed by uninfected and VACV-infected

cells were eluted and their sequences determined by

mass spectrometry [34�,49,50]. The emerging data indi-

cated that numerous VACV-derived peptides/proteins

were processed and presented by HLA class I molecules

during a natural infection (e.g., Table 1; [34�,49,50]).

Despite the presentation of numerous peptide determi-

nants or the existence of numerous predicted epitopes,

upon infection immune T cells arise only against a subset

of these peptides (Table 1; [34�,37]). Moreover, the

identification of naturally processed determinants pre-

cisely informed immune epitopes and vaccine candidates

because immune T cells recognized a large fraction of

stably presented VACV-derived peptides and/or con-

ferred protective immunity upon epitope vaccination

[34�]. Nevertheless, there was only partial overlap be-

tween immune epitopes identified by the two

approaches — algorithm-based prediction versus elution

and proteomics — indicating that a combination of both

approaches as in the proteogenomic approach could be

powerful in the initial identification of potentially protec-

tive CD8 T cell epitopes.
Immune epitopes: eluted

versus predicted epitopes

CD8 T cell reactive

(human/mouse)

17/25 31/18 (9)***

2/8 15/10 (7)

lished data).

Current Opinion in Immunology 2015, 34:43–51
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One question that emerged from the afore studies is

‘how does the host benefit from presenting so many

determinants by a given HLA class I molecule (Table 1;

[34�,49,50])?’ Presentation of a broad array of VACV

determinants might underlie cross-protective immunity

against heterologous poxviral infections and might un-

derlie the success of vaccinating against smallpox with

cowpox virus or VACV. Yet another answer might lie in

human CD8 T cell response to VACV. Several groups

have reported that vaccinated volunteers expressing the

same HLA class I molecule recognize different subsets

of partially overlapping VACV-derived epitopes, sug-

gesting a variegated pattern of recognition (e.g., Table 2;

[34�,37,51,52]). Therefore, it is possible that the presen-

tation of numerous class I-restricted determinants

ensures the recognition of at least one epitope (see

Table 2; [34�,37,51,52]). A population-wide study is

needed to test this hypothesis. As well, such studies

could lead to an understanding of population genetics of

variegated responses. Together they have the potential

to inform vaccine design and vaccination strategies and,

hence, are worthy of investment.
Table 2

Variegated pattern of naturally processed B*07;02-restricted

epitope recognition by smallpox vaccines*

Amino acid 
sequence**

ORF B*07;02-positive volunteers$

FPYEGGKV F E9L526-534 456

FPRSMLSI F L4R37-45 222

SPSNHHIL L A3L192-200 291 823

FPKNDFVS F B8R70-79 534 539 673

RPRDAIRF L E2L216-224 367

RPNQHHTID L N2L104-113 576

APASSLLPA L A4L126-135 392

FPSVFINP I E9L175-183 332 689

VPITGSKLI L G2R140-149 158 9074 278 736

YPSNKNYE I A11R22-30 144 8701 238 1383

LPSNVEIKA I I6L282-291 1317 438

IPKYLEIE I A20R162-170 722

NPSKMVYAL L E5R131-140 291 1725

NPSVLKIL L B25R78-86 681

RPSTRNFFE L D1R808-817 624 2235

* See Ref. [34�] for details.
** Anchor residues are in bold.
$ Interferon-g spot-forming cells over background per million volun-

teer peripheral blood mononuclear cells. Intensity of red, hierarchy

within an individual; green, no response.
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The sensitive yet cross-reactive TCR: an oxymoron?

The T cell receptor (TCR) is very sensitive: it is capable

of recognizing and responding to one-to-ten molecules of

an antigen [53,54]. Additionally, it can discriminate be-

tween two peptides differing by a methylene group or a

methyl and a hydroxyl group in an accessory anchor — for

example, H4 minor histocompatibility alloantigens

[55,56]. This sensitivity coupled with a rather loose

‘recognition logic’ with which the TCR interfaces its

cognate antigen — the p/MHC [57–59] — makes it high-

ly cross reactive.

The estimated frequency of T cell cross reactivity to

unrelated peptides is 1/30,000 [60]. In search of the H4

alloantigen using a pep-scan approach, we discovered that

an H4b-reactive CD8 T cell line recognized �100 differ-

ent peptides [61] — that is, mimotopes — yet did not

yield the primary structure of the actual epitope

[55,56]. This was not peculiar to the alloreactive TCR

because the SV-40 epitope-4 specific and herpes simplex

virus 1 gB-reactive T cell clones showed extensive cross

reactivity as well. A common feature between the mimo-

topes recognized by the three CD8 T cell clones was they

contained a TCR-specific recognition motif consisting of

one or two conserved putative solvent exposed residues

that can be contacted by the receptor. At the other

extreme, a single autoimmune TCR has recently been

shown to recognize over a million different peptides

within a broad cross-reactivity profile [62]. Such cross

reactivity is not peculiar to MHC class I-restricted TCRs

as several class II-restricted TCRs were shown to cross

react in a similar manner (see [63��,64] and references

therein). The cross-reactive feature of the TCR further

underscores the critical need for comprehensive immu-

nologic validation of an identified epitope. Furthermore,

inclusion of structural features of p/MHC as well as TCR-

p/MHC binding and interactions (e.g. [57–59,65]) into

newer iterations of algorithms can enhance their predic-

tive power [63��].

Immunogenicity and immunodominance: it ain’t what it

used to be!

A large number of T cell epitopes have populated the

IEDB and other data bases. Even for pathogens with

relatively small genomes such as HIV there are zillions

of known immune epitopes that arise from ORFs and

even ARFs (http://www.hiv.lanl.gov). Nonetheless, in

many cases, which of these epitopes form potent targets

for vaccination requires further characterization. The

correlates of protective immunity in humans are largely

unknown, but the prevailing view is that epitope immu-

nogenicity and immunodominance might be the best pre-

dictors of protective T cell responses. Immunogenicity is

assessed as the ability to recruit the naı̈ve precursors into

the immune response upon epitope immunization. Immu-

nodominance is a property of the adaptive immune

response to complex antigens wherein antigen-specific
www.sciencedirect.com
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lymphocytes respond disproportionately to the different

epitopes on the antigen. This feature of the immune

response is more accentuated in inbred strains of mice

than in outbred populations such as ours. Hence, immu-

nodominance has been extensively studied in mice —

for example, CD8 responses to SV-40 T antigen, IAV,

lymphocytic choriomeningitis virus and VACV (e.g. Refs.

[47,48,66–68]). Multiple host factors — including the

kinetics and dynamics of epitope generation and presen-

tation, p/MHC stability, a diverse and functional T cell

repertoire, precursor frequency, TCR avidity/dwell-

time for cognate p/MHC and T cell competition for

epitopes — control immunodominance [69–71].

A recent advance, which involves p/MHC tetramer-based

enrichment allows enumeration of the naı̈ve CD8 T cell

precursors bearing antigen-specific TCR [69]. Many stud-

ies have shown that the magnitude of immune T cell

response is roughly proportional to the naı̈ve precursor

frequency. Some immune epitopes violate this rule, how-

ever. Thus, despite relatively high naı̈ve precursor fre-

quency and high immunogenicity — as assessed by

peptide immunization — several epitopes yielded sub-

dominant CD8 T cell responses to VACV infection in

mice, and vice versa (see Table 3). In the most striking

case, a highly immunogenic B*07;02-restricted epitope in

mice that has a very high naı̈ve precursor frequency

elicited a poor CD8 T cell response of low magnitude

during viral infection (Table 3). This was due to poor and

late epitope presentation [34�]. Furthermore, challenge

studies in mice with VACV and the mousepox agent
Table 3

Biochemical and immunologic properties of HLA-B*07;02-restricted a

Amino acid

sequence**
ORF t1/2 (hour)$ Precursor frequency

(#/mouse)

LPRPDTRHL A34R82–90 1.52 2465 

RPSTRNFFEL D1R808–817 2.93 1892 

FPKNDFVSF B8R70–79 5.2 1472 

MPAYIRNTL J6R303–311 5.44 521 

HPRHYATVM D1R686–694 6.47 308 

SPSNHHILL A3L192–200 5.46 134 

FPTNTLTSI I6L237–245 0.54 nd 

FPRSMLSIF L4R37–45 6.08 6104 

LPKEYSSEL D5R375–383 7.44 1240 

APNPNRFVI F4L6–14 8.81 668 

RPMSLRSTII O1L335–344 5.31 nd 

RPRDAIRFL E2L216–224 4.81 126 

RPNQHHTIDL N2L104–113 4.73 nd 

FPYEGGKVF E9L526–534 6.17 nd 

* See Ref. [34�] for details.
** Listed in the order of hierarchy, see last column.
$ Half-life of p/MHC stability.
& Range and mean of splenic responder CD8 T cells elicited by VACV infe
@ Range and mean of splenic responder CD8 T cells elicited by peptide i
% Protection from lethal intranasal VACV challenge of mice prime boosted w

burden yet sustained weight loss as compared to mock control; +++, highly p

control.
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ectromelia virus revealed that subdominant epitopes

can also elicit protective immunity as do immunodomi-

nant epitopes (Table 3; [31�,34�]). Hence, neither immu-

nodominanance nor immunogenicity predicted the most

protective epitopes when the entire panel was assessed

(Table 3). In mice, therefore, the protective capability

of individual T cell response upon epitope immunization

might be a complex interplay between efficient proces-

sing of epitopes from cognate antigen, the presence of

naı̈ve precursors, as well as temporality and duration of

epitope presentation by microbe-infected cells — none

of which can be predicted by currently available algo-

rithms.

Immunodominant T cell responses are observed in

humans as well, wherein a preferential recognition of a

particular epitope by a majority of the subjects within the

cohort tested, even if the magnitude of the response is

low, is considered immunodominance. Strikingly, howev-

er, several groups have reported that vaccinated volunteers

expressing the same HLA class I molecule recognize

different subsets of partially overlapping VACV-derived

epitopes, suggesting a variegated pattern of recognition

(e.g., Table 2). Hence, a clearly defined immunodominant

VACV epitope(s) was not seen within the three study

populations. That notwithstanding, a clear hierarchic re-

sponse to the different epitopes was observed within each

individual tested (e.g., Table 2; [34�,37,51]). This finding

suggests that the combination of HLA class I molecules

(HLA haplotypes) can control CD8 T cell response. In-

deed, immunodominance hierarchy was altered depending
nd VACV-reactive CD8 T cell epitopes in B7.2 transgenic mice*

Magnitude of response

to VACV % (mean)&
Magnitude of response

to peptide % (mean)@
Protective

epitope%

4.0–10 (6.81) 11.6–22.6 (15.0) +++

4.0–8.7 (6.28) 1.2–27.4 (13.9) +

1.0–4.9 (2.38) 16.6–51.5 (35.0) +++

0.3–1.8 (0.86) 11.9–51.4 (32.6) +++

0.2–1.6 (0.7) 4.1–14.5 (10.1) +

0.3–1.3 (0.67) 14.4–34.5 (21.6) +++

0.01–0.8 (0.35) nd nd

0.05–0.3 (0.17) 84.1–92 (86.5) –

0.07–0.3 (0.16) 8.3–22.6 (16.1) +++

0.03–0.5 (0.15) 17.7–75.2 (53.6) +++

0–0.4 (0.14) nd nd

0.03–0.2 (0.11) 22.4–44.3 (24.5) +

0.02–0.3 (0.1) nd nd

0.01–0.1 (0.05) nd nd

ction.

mmunization; nd, not determined.

ith the test peptide: –, non-protective; + weakly protective — low VACV

rotective — low VACV burden and weight loss when compared to mock

Current Opinion in Immunology 2015, 34:43–51
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on the mouse MHC haplotype and genetic background.

This outcome was explained by alterations in naı̈ve pre-

cursor frequency of CD8 T cell responders against VACV

epitopes within the inbred versus F1 mice tested [66]. A

recent paradigm-shifting study by Picker and colleagues

uncovered a role for immunoregulation in shaping anti-

viral response that suggested a new avenue for epitope

discovery: immunization with genetically engineered cyto-

megalovirus vectors induced a broad, protective SIV-spe-

cific CD8 T cell response that targeted unconventional

(MHC class II restricted) and promiscuous (presented

by multiple MHC alleles) epitopes [72��]. If violation of

rules of MHC restriction is more common than previously

thought, then efforts so far will have underestimated the

breadth of immune epitopes and missed protective

antigens. The interplay between antigen presentation,

measurable T cell response parameters, and microbial

pathogenesis will be a matter for continued investigation

to enable protective epitope discovery. The poor success of

the recent T cell targeted vaccine trials against HIV/AIDS,

malaria, and TB [73–76] clearly signal the need for re-

evaluating current strategies for protective T cell epitope

discovery.

Note added in proof
In their report, which appeared after the submission of this

review, Jenkins and colleagues (RW Nelson et al. Immu-

nity 42: 95–107; 2015) addressed why TCRs are cross

reactive and what the consequences might be. TCR cross

reactivity to multiple different peptides was determined by

sharing five residues within nonameric peptides (see also

Refs. [61,63��]). Such cross reactivity deleted a substantial

pool of self reactive T cells and, thereby, reduced the size

of the peripheral T cell repertoire reactive toward an

antigen. As well, the maintenance of a cross reactive

peripheral T cell repertoire pre-disposed the host to auto-

immunity while responding to microbial infections.
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