Current Trends in Multidisciplinary Care of Patients with Tracheostomy

Nina Collins, MSN, RN, ACNP-BC

Trach/PEG Team Nurse Practitioner

Division of Acute Care Surgery

Meredith Oakey Ashford, MS, CCC-SLP Adult Acute Care Speech Pathology Department of Hearing & Speech Sciences

VANDERBILT UNIVERSITY MEDICAL CENTER

PRESENTATION OUTLINE

- Tracheostomy Foundations: Surgical Perspective
- Multidisciplinary Tracheostomy Teams:
 - What they are & How they work
- MDT# 1: Procedures, policies, emergencies, education.
- MDT Issue #2: What we learned from COVID
- MDT Issue #3: The importance of checking cuff pressures

LEARNING OBJECTIVES

- Describe how a multidisciplinary trach team can improve the quality of patient care.
- Describe multiple ways a multiple ways a multidisciplinary trach team can cut costs to a hospital.
- List steps for checking trach cuff pressure.

DISCLOSURES

Financial:

Meredith Oakey Ashford and Nina Collins are employees of Vanderbilt University Medical Center which pays her a salary.

Non-Financial:

Meredith Oakey Ashford and Nina Collins are members of Vanderbilt Adult Hospital's multidisciplinary tracheostomy team.

Tracheostomy is one of the most frequent procedures performed in the Intensive Care Unit¹

WHY? Common Indications for Tracheostomy²

- Respiratory failure with prolonged mechanical ventilation**
- Need for long term ventilation
- Inability to protect airway
 - Altered mental status
 - Weak "cough and clear"
- Upper airway obstructions
- Trauma²

Benefits of a Tracheostomy

- Minimizing sedation
- Improving comfort
- Improving communication
- Assisting with clearing of secretions
- Improved mobility
- More aggressive ventilator weaning
- Decreased ICU length of stay^{3,4}

Who?

Intubated for 7 or more days

1 or more failed extubation attempts

INR < 2.0

FIO2 <60%, PEEP 10 or less

• COVID-19: >21 days from + test, FIO2 <80%, PEEP 12 or less

Conventional ventilation modes

Use caution with prior radiation

Use caution with exchanges for BMI >60

When? Early Tracheostomy

 Many studies show that early tracheostomy (ventilator day #7) is associated with:

- Fewer ventilator days
- Fewer ICU days⁵

When to pump the brakes

- Limited life expectancy
- Need for goals of care conversations
- Hemodynamically unstable
- Out-of-range vent settings
- BMI >60
- Prior history of radiation or surgery to neck
- Anterior cervical fusion within 7 days

- Coagulopathy
 - INR >2
 - Platelet count less than 50 (x10(3)/mcl)
 - 20-50- need platelets transfusing during actual procedure
 - Hold for platelet counts less than 20
- Therapeutic blood thinners that have not been held appropriately

How? Percutaneous Dilational Approach (PDT)

- First described in 1955
- Further refined in 1985 (Ciaglia approach)
- Paved the way for bedside percutaneous tracheostomies
- Improved cost efficacy
- Minimized transport of critically ill patients to the operating room (OR)
- Improved patient safety⁶

VANDERBILT WUNIVERSITY MEDICAL CENTER

How? Percutaneous Tracheostomy

- Introduction of a series of increasingly large dilators into the trachea until a stoma is created
- Can be performed at the bedside in the ICU
- Vast majority of tracheostomy procedures performed by Trauma/Burn/Emergency General Surgery and Cardiothoracic Surgery
- 3.5% complication rate in immediate post-surgical period¹⁵

How? Open Tracheostomy

- Traditional open stoma approach
- Performed in the operating room
- Surgical approach typically used by ENT
- Pros: appropriate for high risk patients
 - Prior tracheal surgeries
 - Head and neck cancers prior surgeries or radiation
 - Obesity
- Cons: more costly, transporting to OR

How? Cricothyroidotomy

- Placement of a breathing tube (usually an ETT) into an incision through the cricothyroid membrane
- Indication: "can't intubate or can't oxygenate"
 - Establishment of an emergency airway
 - Trauma/facial fractures, airway edema or trauma, high volume vomitus or bleeding, trismus, obstruction (i.e. tumors), foreign bodies
 - can be performed pre-hospital (i.e. air ambulance)
 - Later formalized into a tracheostomy
- Complications: (13%) bleeding, not successful, damage to larynx or trachea¹⁶

Exchanges – "Downsizing"

- Need to perform under supervision until develop/demonstrate competence
- May be performed by RT at some facilities
- Changing to smaller lumen trach
- Cuffed or non-cuffed
- Cuffed exchanges are more technically difficult
- Need to have second licensed person in room (MD, NP, RN)
- Can use obturator or red rubber as guide
- Beware: bleeding

Cuffed Exchanges

- After POD #5
- continued mechanical ventilation
- Need to tolerate PS/trach collar for at least 10 min (if possible)
- INR? Platelet Count? Medications?
- Impending procedures?
 - Can use #7.0 or 7.5 cuffed
- Impending bronchoscopies?
 - #8 or #9 preferred, but can ventilate with 7.5- #7.0 cuffed

Non-Cuffed Exchanges

- Off vent for >48 hrs (or longer in some cases)
 - COVID-19 = ~5 days
- Tolerating cuff deflation for >24 hrs
- Only use #7.0 or #7.5 noncuffed in acute setting
 - #5 or #6 trachs have very narrow lumen, frequent plugging

Exchange Procedure

- Make sure red airway bag is outside door
- Hyper-oxygenate to 100% Flo2
- Tell bedside nurse you're about to do it
- Check that you have a ambu with mask
- Check that suction is working, have Yaunkeur
- Suction patient if needed
- Open trach package (clean procedure), remove inner cannula, lubricate outside of trach and outside of inner cannula
- Place obturator in trach
- Stand on dominant hand side and not in direct line of fire
- Place at 90 degree angle and swing down as insert into lumen
- Should feel a pop-pop when in lumen
- Pull out obturator
 - Hold faceplate stable
 - Insert inner cannula
 - Check ETCO2 to check placement
 - See if can pass suction catheter
 - Turn down Flo2
 - Have RN update size on airway sign at HOB

VANDERBILT WUNIVERSITY MEDICAL CENTER

Am I in the Airway?

ETCO2 detection

Able to pass suction catheter

Equal chest rise

Bilateral breath sounds

Return of TV on vent (match of TVi and TVe)

What could go wrong?

- Bleeding
- False passage
- Mal-positioned
- Patient decompensation
- Loss of airway

When is some bleeding too much bleeding?

- Drop in SAO2
- Changes in vital signs/hemodynamics
- Drop in HGB/HCT
- Suctioning significant clots/plugs
- Bleeding that is new onset
- Bleeding that is getting worse, not better
- Increase in PIP

VANDERBILT VUNIVERSITY MEDICAL CENTER

Early Complications

Bleeding

- Injury to blood vessels
- Infection
- Injury to the tracheal wall
- Loss of airway
- Pneumothorax
- Impaired communication and swallowing

Late(r) Complications

- Accidental dislodgement
- Tube obstruction
- Tracheal stenosis
- Tracheomalacia
- Granulation tissue
- Fistulas
 - Tracheocutaneous
 - Tracheoesophageal
 - Tracheoinnominate
- Tracheomegaly

What? Tracheostomy Tube Components

VANDERBILT WUNIVERSITY MEDICAL CENTER

Cuffed vs. Non-Cuffed

Fenestrated vs. Non-Fenestrated

VANDERBILT WUNIVERSITY MEDICAL CENTER

XLT-Distal vs. XLT-Proximal

XLT-Distal vs. XLT-Proximal

This diagram illustrates how the proximal, radial, and distal measurements are determined for sizing.

VANDERBILT WUNIVERSITY MEDICAL CENTER

Above the Cuff Suctioning & Above the Cuff Phonation

- Cuffed trach tube with an additional tube that connects to an air source. Air travels through this tube and flows out of an opening above level of cuff
- Primarily for vent dependent patients with adequate oral motor function who cannot tolerate cuff deflation

Multidisciplinary Tracheostomy Teams (MDT)

Goals of Multidisciplinary Teams

Clinical Care Goals

• Improved quality of patient care

 Consistent use evidencebased practice across the team⁹

Program Development Goals

 Strategic management process that develops thinking and learning among team members⁷

 Advancement of research to establish better methods of patient care⁸

•Quality Care defined:

- -provides patient safety,
- -takes into account patient experiences and
- -empowers patients through offering choices and better information.10

Safety

- Reduced potential for infection
- Decreased complications and adverse events

Patient Comfort

- Improved QOL
- Use of small trach tube sizes
- Standardized Cuff deflation

Coordination with SLP

- Increased use of speaking Valve
- Faster communication and swallowing evaluations
- Restoration of normal respiratory physiology/cough function

Cost savings

- Reduced time to procedure
- Cost savings due to decrease LOS ¹¹

Trach/PEG Nurse Practitioner

Patient Care Roles

- "Face" of the Trach/PEG team
- Initial consultation and evaluation
- Coordination of the procedure
- Daily management/rounds
- Documentation
- Procedures: downsizing, trach exchanges, decannulations
- Outpatient clinic

Program Development Roles

- Research
- Staff education nursing staff, house staff, students
- Development of evidence-based protocols/order sets

Speech Language Pathologist

Possible Patient Care Roles: Your house, your rules.

- For primary service, receives standard swallowing and speaking valve evaluations orders as part of the tracheostomy pathway when tracheostomy is planned.
- Monitors chart for placement of tracheostomy tube, mental status readiness for assessment, respiratory readiness for speaking valve assessment. Completes assessments when patient is ready.
- Acts as consultant: Offers suggestions to team about other communication options including trach change (downsize vs. cuffless vs. above the cuff phonation)
- Discusses candidacy for communication options while vent dependent via trach.

Speech Language Pathologist

Program Development Roles:

- Nursing education regarding swallowing and communication.
- Advises multidisciplinary team for trends that cross surgical services

Mutlidisciplinary Team Issue # 1: Collaboration on Protocols and Procedures

Nursing orders and Education

SLP orders

Emergency airway procedures and supplies

Safety Equipment

Surgical Airway Safety Kit

- Ambu bag
- Mask
- End-tidal CO2 detector
- Suction kit x 2
- Airway sign
- small-bore ETT tubes
- Working Suction at all times with Yaunker
 - Portable suctioning when traveling?
- Replacement trach tube of same style and size
- Pulse oximetry
- TRAVELS WITH PATIENT
- Extra inner cannulas?

Safety: Replacement Tubes

- A duplicate sterile trach tube should be on hand at all times
- Taped to the HOB to the wall above the bed.
- same brand and size
- Sent with patient when leaves room for tests /procedures

Safety: Mask

- Mask must stay with Ambu bag
- Travels with patient
- Where can I use this mask?
 - Face for vent weaning trachs
 - Stoma for laryngectomy patients
- Neonatal or infant oxygen mask for patients with Ossoff tube or permanent tracheostoma to be used with the Ambu bag.

Tracheostomies and Vents

- Always use the "arm" to hold vent circuit in neutral position
 - can deviate Trach with weight of the vent circuit
 - Can "tilt" the trach tube within the trachea
 - Can partially or completely dislodge trach tube
- Never tie vent circuit to bedrails-Can dislodge trach!

Multidisciplinary Team Issue #2: How COVID-19 Changed Patient Care

• Recommendations are a moving target

- Timing: currently when cleared from isolation precautions
- Shorter time to tracheostomy associated with decreased duration of mech vent 12
- Goal vent settings:
 - Conventional modes of ventilation
 - Stable on FIO2 of 80% or less, PEEP 12 or less
- Appropriately held anticoagulation
- High risk of adverse events typically bleeding

COVID-19

COVID-19: Farlow et al.- 4/2021¹²

n=64 (of 146 pts with ETT), 64% male, median age 54, BMI median of 33, SOFA median 9

- 13% of intubated COVID patients
- n=60 at bedside, 20% on VV ECMO
- 59% DPT, 41% open trach

Median time to trach was 22 days

Earlier trach associated with decreased duration of mech vent (P<0.01)

- 19% of cohort died during study of non-trach related causes
- 45% experienced adverse events
 - Bleeding (33%)
 - Plugging (11%)
 - Accidental decannulation (5%)

- Desaturation during procedure (3%)
- False passage (2%)
- Vocal cord dysfunction (3%)

COVID 19 & Tracheomegaly

- Acquired
- Dilated trachea \geq 25mm (F) and 27mm (M)⁴
- Frequently in COVID-19
- Likely 2/2 prolonged high PEEP, high PIP leading to high cuff manometry
- Cuff pressures > 25 cm H20
- Peritubal cuff leak despite over-inflation
- c/f TVi/TVe mismatch, Δ MV, hypercarbia, resp acidosis, aspiration
- May require XLT distal trach

VANDERBILT WUNIVERSITY MEDICAL CENTER

Multidisciplinary Team Issue #3: The Problem of Cuff Over Inflation

Endotracheal tube cuff pressure monitoring: a review of the evidence

by Pervez Sultan, Brendan Carvalho, Bernd Oliver Rose and Roman Cregg

- Blood flow compromised at pressures exceeding 30cmH20 and obstructed at pressures exceeding 50cmH20 in normotensive patients
- Cuff overinflation for greater than 15 minutes appears to be an important determinant of tracheal capillary hypoperfusion in animal models

Complication	Reference
Recurrent laryngeal nerve palsy	(Otani et al 1998, McHardy & Chung 1999)
Mucosal ischemia and loss of ciliary function	(Klainer et al 1975)
Mucosal ulceration	(Combes et al 2001)
Mucosal bleeding	(Berlauk 1986)
Tracheal ulceration/granuloma	(McHardy & Chung 1999)
Tracheal stenosis	(Shelly et al 1969, Nordin 1977, Weber & Grillo 1978, Stauffer et al 1981)
Tracheal rupture	(Harris & Joseph 2000, Hofmann ef al 2002, Fan et al 2004)
Non-malignant tracheo-esophageal fistula	(Stauffer et al 1981, Pelc et al 200 Reed & Mathisen 2003)
Vocal cord paralysis	(Holley & Gildea 1971)
Post-extubation stridor	(Efferen & Elsakr 1998)
Tracheomalacia	(Valentino et al 1999)
Tracheo-carotid artery erosion	(LoCicero 1984)
Laryngeal stenosis	(Evrard et al 1990, Liu et al 1995)
Death	(Fan et al 2004)

Table 1 Complications associated with increased ET tube cuff pressures

Figure 2 Diagram representing potential mechanism for tracheal mucosal perfusion injury secondary to endotracheal tube cuff overinflation

VANDERBILT WUNIVERSITY MEDICAL CENTER (Sultan 2011)

Cuff Inflation

VANDERBILT 💱 UNIVERSITY MEDICAL CENTER • IF:

*Unintentional cuff leak * cuff pressures > 30 cmH2O *Loss of volumes on ventilator *Aspiration

• THEN:

*May need XLT (P vs D) * P vs D depending on BMI

How does it compare?

VANDERBILT WUNIVERSITY MEDICAL CENTER

References

- Vargas, M., Sutherasan, Y., Antonelli, M., Brunetti, I., Corcione, A., Laffey, J. G., Putensen, C., Servillo, G., & Pelosi, P. (2015). Tracheostomy procedures in the intensive care unit: an international survey. *Crit Care, 19(1), 291. <u>https://doi.org/10.1186/s13054-015-1013-7</u>*
- 2. Saito, K., & Morisaki, H. (2013). Percutaneous dilatational tracheostomy: collaborative team approach for safe airway management. *J Anesth*, 27(1), 161-165. <u>https://doi.org/10.1007/s00540-012-1522-3</u>
- Cameron, T. S., McKinstry, A., Burt, S. K., Howard, M. E., Bellomo, R., Brown, D. J., Ross, J. M., Sweeney, J. M., & O'Donoghue, F. J. (2009). Outcomes of patients with spinal cord injury before and after introduction of an interdisciplinary tracheostomy team. *Crit Care Resusc*, 11(1), 14-19. <u>https://www.ncbi.nlm.nih.gov/pubmed/19281439</u>
- 4. Rumbak, M. J., Newton, M., Truncale, T., Schwartz, S. W., Adams, J. W., & Hazard, P. B. (2004). A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. *Critical care medicine*, *32*(8), 1689–1694. <u>https://doi.org/10.1097/01.ccm.0000134835.05161.b6</u>
- 5. Arabi, Y., Haddad, S., Shirawi, N., & Al Shimemeri, A. (2004). Early tracheostomy in intensive care trauma patients improves resource utilization: a cohort study and literature review. *Crit Care, 8(5), R347-352.* <u>https://doi.org/10.1186/cc2924</u>
- Dennis, B. M., Eckert, M. J., Gunter, O. L., Morris, J. A., Jr., & May, A. K. (2013). Safety of bedside percutaneous tracheostomy in the critically ill: evaluation of more than 3,000 procedures. *J Am Coll Surg*, 216(4), 858-865; discussion 865-857. <u>https://doi.org/10.1016/j.jamcollsurg.2012.12.017</u>
- 7. Jasper M, Jumma M (2005) *Effective Leadership*. Blackwell Publishing, Oxford.
- 8. Hunt J (1997) Towards evidence based practice. Nurs Manag (Harrow) 4(2):14-17
- 9. Ndoro, Samuel (2014). Effective multidisciplinary working: the key to high-quality care. *British Journal of Nursing*, 23 (13). 724-27.
- 10. Care Quality Commission (2010) Guidance about compliance: Essential Standards of Quality and Safety. March. (United Kingdom)

References

11. Garrubba, M., Turner, T., & Grieveson, C. (2009). Multidisciplinary care for tracheostomy patients: a systematic review. *Crit Care, 13(6), R177. <u>https://doi.org/10.1186/cc8159</u>*

12. Farlow JL, Park PK, Sjoding MW, Kay SG, Blank R, Mallow KM, Washer L, Napolitano, LM, Rajajee V, Brenner MJ, Chinn SB, De Cardenas J. Tracheostomy for COVID-19 respiratory dailure: timing, ventilatory characteristics, and outcomes. *J Thorac Dis* 2021;13(7):4137-4145.

13. Sultan, P., Carvalho, B., Rose, B.O., Cregg, R. (2011). Endotracheal tube cuff pressure monitoring: a review of evidence. *Journal of Perioperative Practice*, 21(11), 379-386.

14. Hashimoto, D.A., Axtell, A.L., Auchincloss, H.G. (2020). Percutaneous tracheostomy. *New England Journal of Medicine*, 383, e112. DOI: 10.1056/NEJMvcm2014884

15. Raimondi N, Vial MR, Calleja J, et al. Evidence-based guidelines for the use of tracheostomy in critically ill patients. *J Crit Care. Apr* 2017;38:304-318. doi:10.1016/j.jcrc.2016.10.009

16. DeVore EK, Redmann A, Howell R, Khosla S. Best practices for emergency surgical airway: A systematic review. *Laryngoscope Investig* Otolaryngol. Dec 2019;4(6):602-608. doi:10.1002/lio2.314

THANK YOU

Meredith Oakey Ashford, MS, CCC-SLP meredith.o.ashford@vumc.org

Nina Collins, MSN, RN, ACNP-BC <u>nina.e.collins@vumc.org</u>

VANDERBILT VUNIVERSITY MEDICAL CENTER