

Background

Ehrlichiosis is a nationally reportable vector-borne disease (VBD). Its incidence has been increasing over the past several decades. Three species of *Ehrlichia* bacteria are known to cause human disease:

- Ehrlichia chaffeensis first described 1987; most commonly reported human disease agen
- *Ehrlichia ewingii* first described 1999.
- Ehrlichia-muris Like Agent (E. muris eauclairensis) – first described 2011; vectored by the black-legged tick (*Ixodes scapularis*).¹ Not found in Tennessee.

Novel Panola Mountain Ehrlichia (PME) species – first described in 2006 from an infected goat in Georgia, USA; potential human pathogenicity.²

- fever, headaches, fatigue, muscle aches, and gastrointestinal manifestations
- *E. chaffeensis* ehrlichiosis case fatality rate ~3%; no deaths from *E. ewingii* and EML agent infections have been reported

Transmission

E. chaffeensis and *E. ewingii* are transmitted by **the lone star tick**, **Amblyomma americanum**, the most common human biting tick in the southeastern U.S.

White-tailed deer are a main host for all three lone star tick life stages and are thought to be an important natural reservoir of *Ehrlichia*.

While all life stages are known to feed on humans, only adult and nymphal A. americanum ticks are known *E. chaffeensis* vectors. Absence of transovarial transmission makes Ehrlichia transmission less focal and more widespread.¹

Figure 1. *Ehrlichia chaffeensis* transmission cycle.³

Tennessee: 2nd highest VBD case burden 111 cases in 2021

Ehrlichiosis Incidence Rate by County, 2011-2021

Figure 2. Average annual reported ehrlichiosis incidence varies widely across the state; however, tickborne diseases are generally underrecognized and cases are reported by a patient's county of residence. The movement and interaction of ticks, animal hosts, bacteria, and humans make it challenging to estimate disease risk from case surveillance alone.

Enrichig and lone star ticks: Pathogen prevalence in counties of varying ehrlichiosis incidence

Lucie Taylor^{*,†}, Athena Lemon^{*}, Abelardo C. Moncayo^{*} *Tennessee Department of Health, [†]CDC/APHL Infectious Disease Laboratory Fellowship

How can active tick and pathogen surveillance supplement disease data to enhance our understanding of disease burden and risk?

County	Site	Adult female	Adult male	Nymphs	Total	
Davidson	Beaman Park	2	2	496	743	
	Peeler Park	27	26	190		
Franklin	State Forest	7	8	25	159	
	Tims Ford State Park	11	11	97		
Maury	Chickasaw Trace Park	7	2	15	125	
	Yanahli Park	7	2	101		
Rutherford	Barfield Crescent Park	8	5	58	280	
	Long Hunter State Park	26	23	160	200	

Real-time PCR Assay Menu							
	A. americanum	D. variabilis	I. scapulari				
Rickettsia spp.	\checkmark	\checkmark					
R. rickettsii	\checkmark	\checkmark					
R. parkeri*	\checkmark	\checkmark					
E. chaffeensis	\checkmark						
E. ewingii	\checkmark						
PME	\checkmark						
Heartland virus	\checkmark						
Bourbon virus	\checkmark						
Borrelia spp.			\checkmark				
B. burgdorferi			\checkmark				
A. phagocytophilum			\checkmark				
*Single A. maculatum	sample tested for	R. parkeri.					

Ehrlichia Testing Results

13% of lone star tick pools were positive for an *Ehrlichia* species

Total pools positive:

- **13** *E. chaffeensis*
- 25 E. ewingii
- Panola Mountain *Ehrlichia* sp. 14

8 pools positive for > 1 species

Discussion & Analysis

Table 2. Ehrlichiosis incidence compared to *A. americanum Ehrlichia*-infection rates in four Middle TN counties

			Infection Prevalence [‡]			
County	Ehrlichiosis Incidence Rate [‡]	E. chaffeensis + E. ewingii	E. chaffeensis	E. ewingii	PME	
Maury	2.67	7.42 (3.45, 13.44)	4.36 (1.59, 9.17)	2.52 (0.63, 6.42)	0	
Davidson	1.55	3.29 (2.13, 4.78)	0.68 (0.25, 1.46)	2.35 (1.54, 3.87)	0.96 (0.41, 1.85)	
Franklin	0.47	0.63 (0.04, 2.75)	0.63 (0.04, 2.75)	0	0	
Rutherford	0.35	1.38 (0.43, 3.17)	0.72 (0.12, 2.21)	1.46 (0.46, 3.36)	2.62 (1.13, 5.01)	

[‡]Average annual ehrlichiosis IR per 100,000 population from 2011-2021; Tick IP point estimates calculated as the Minimum Infection Rate per 100 ticks tested with 95% confidence interval limits.

- Higher prevalence of *E. ewingii* than *E. chaffeensis* in Davidson and Rutherford counties
- PME was the most prevalent *Ehrlichia* spp. in Rutherford county
- The combined infection prevalence in ticks of *E. chaffeeensis* and *E. ewingii* matches the relative disease incidence by county
- ★ 16 cases of *E. ewingii* ehrlichiosis reported in TN since 2010; in that period 48% of *E.* chaffeensis cases were classified as "probable" ⁵
- * *E. chaffeensis* and *E. ewingii* infections are clinically and serologically indistinguishable; *E. ewingii* ehrlichiosis surveillance is based on molecular diagnostics⁶
- Our results suggest there are more *E. ewingii* cases than have been reported; a proportion of reported E. chaffeensis cases are likely due to E. ewingii infection

> Providers should consider testing for *E. ewingii* as well as *E. chaffeensis* when ehrlichiosis is suspected.

References

- 1. Biggs, H. M., Behravesh, C. B., Bradley, K. K., et al. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis — United States; A practical guide for health care and public health professionals. MMWR Recomm Rep 2016;65(No. 2):6-8. https://www.cdc.gov/mmwr/volumes/65/rr/pdfs/rr6502.pdf
- 2. Loftis, A. D., Reeves, W. K., Spurlock, J. P., et al. (2006). Infection of a goat with a tick-transmitted Ehrlichia from Georgia, U.S.A., that is closely related to Ehrlichia ruminantium. Journal of Vector Ecology, 31(2), 213-223. https://doi.org/10.3376/1081-1710(2006)31[213:IOAGWA]2.0.CO;2
- 3. Paddock, C. D., & Childs, J. E. (2003). Ehrlichia chaffeensis: A prototypical emerging pathogen. *Clinical Microbiology Reviews*, 16(1), Figure 6. https://doi.org/10.1128/CMR.16.1.37-64.2003
- 4. Vector-borne diseases program 2021 summary newsletter. (2022). Tennessee Department of Health. 5. Data from the National Electronic Disease Surveillance System (NEDSS) in Tennessee, 2010-2022.
- 6. Centers for Disease Control and Prevention. (2022, May 19). Ehrlichiosis. https://www.cdc.gov/ehrlichiosis/index.html