Yin and Yang of Hypothermia in Trauma and Adult Critical Care

Raeanna C. Adams, MD

Assistant Professor Trauma and Surgical Critical Care Department of Surgery Vanderbilt University Medical Center

Before medicine...

Financial Disclosures

Objectives

Definitions Lessons learned Physiology/pitfalls History of IH Uses of hypothermia Future

Clipart courtesy FCIT

Definitions of Hypothermia

	Induced (°C)	Exposure (°C)
Mild	33-36	33-36
Moderate	28-32	28-32
Deep/ Severe	16-27	<28
Profound	6-15	

"Not dead until warm and dead"

Lowest temp documented in survivor:

Infant - 15.2° C (59.4° F) Adult - 13.7° C (56.8° F)

"Not dead until warm and dead"

Not reliable in hypothermia:
Tissue decomposition
Apparent rigor mortis
Dependent lividity
Fixed/dilated pupils

Series: 9/27 patients CPR in field, 6/14 survived ED CPR

Danzl DF. Ann Emerg Med 1987.

Lessons from Primary Hypothermia

Passive vs Active rewarming

- External-truncal
- Core
 - Warmed IVF
 - Heated, humidified ventilation
 - Lavage-gastric, colonic, mediastinal, thoracic, peritoneal
 - VV or AV extracorporeal
 - CPB
- Physiology
- For each $1^{\circ}C \downarrow = 6-7\% \downarrow$ in cerebral metabolism

Auerbach, Wilderness Medicine, 5th ed.

Lessons Learned

Intermittent flow may be preferable to no flowDifference between warm and cold ischemia time

N	Avg Age (y)	Long-term survival (# pts)	Presentation esophageal temp (mean)	Time to CPB (mean)
32	25.3	15	21.8°C	141 min

Walpoth BH. Eur J Cardiothorac Surg 1990.

Survival of Hypothermia

Predictors of survival:

Rapid cooling
VF during cardiac arrest
Narcotic/ethanol intoxication

Poor prognostic factors:
 Severe hyperkalemia (>10meq/dL)
 Pre-hypothermia asphyxiation

Auerbach, Wilderness Medicine, 5th ed. Silfvast T. Resuscitation 2003. Schaller MD. JAMA 1990.

Cardiovascular

Most vasopressors relatively ineffective

Hemodynamics

Hypothermia	HR	SVR	СО	CVP	MAP
Mild-mod	Ļ	1	Ļ	1	\leftrightarrow

Bradycardia unresponsive to atropine
Atrial/ventricular fibrillation

Respiratory

- Initial tachypnea \rightarrow hypopnea
- CO2 prod = \downarrow 50% / 8°C \downarrow

Decreased ciliary motility and airway reflexes

VQ mismatch
atelectasis
bronchorrhea

Renal

Cold diuresis
 Increased with EtOH
 Electrolyte loss

Renal tubular dysfunction
 ↓ creatinine clearance—drug dosing

Hypokalemia – loss and intracellular shift

Polderman KH. Intensive Care Med. 2003. Macintosh TK. Brain Res. 1989.

Coagulopathy

- Enzyme inhibition
 - Increased PT, possibly PTT
 - Clotting cascade affected below 34°C
- Decreased plt count/function
- Fibrinolysis

If due to hypothermia: not reversed with FFP, easily reversed with rewarming

Clinically significant?

Watts DD. J Trauma 1998 Sessler DI. NEJM. 1997.

Infectious

■ ↓ function of neutrophils and macrophages

? ↑ pneumonia-esp if IH>48hr

 Wound infxn: local vasoconstriction and suppression immune function

> Shiozake T, et al. J Neurosurg. 2001. Schwab S. Stroke. 2008. Alderson P. Cochran Database Syst Rev. 2008. Kurtz A, et al. NEJM. 1996.

Neurologic

Mild hypothermia – confusion, ataxia

Moderate – obtundation

Hyperreflexia at 32° C

<27°C, loss of pupillary light reflex and DTR</p>

Tsuei and Kearney. Injury, Jan 2004.

Spontaneous vs Induced Hypothermia

	Spontaneous	Induced
Cause	Severe ischemia, ↓ cellular reserve Unable to thermoregulate Environmental exposure	Deliberate, controlled Poss more cellular reserve
Significance	Advanced tissue ischemia \$\\$ cellular substrates Failure of homeostasis Shivering worsens mismatch of tissue supply/demand	 metab rate Preservation of substrates free radical oxidative stress vasc permeability Active shivering prevention
Clinical Implication	Lethal triad Poor prognostic sign	Therapeutic strategy with potential benefit

******Metabolism is reduced 5-8% for each \downarrow 1° C**

Does Cold Kill?

Gentilello LM. Ann Surg. 1997 ■ N=57, randomized Trauma pt with $T \leq 35.5^{\circ}C$ Rewarming with CAVR vs standard \blacksquare 7% vs 43% mortality Pt who did not rewarm died Chicken or egg?

"All bleeding stops...eventually"

- Lethal Triad/Damage control
 - Hypothermia
 - Coagulopathy
 - Acidosis
- Marker of severity
- ? Animal models of better outcome with IH in exanguination

Rotondo M. J Trauma. 1993. George ME. J Trauma. 2010.

Why We Warm in Trauma

- (Spontaneous) hypothermia tripled chance of death
- ↓ 2°C increased EBL by 500cc
 3x SSI with periop hypothermia
- Important to realize:
 - Marker of severity of injury
 - Benefits vs risk

George ME. J Trauma. 2010. Ireland S. Resuscitation. 2010. Wang H.E. Crit. Care Med. 2005. Sessler. NEJM. 1997. Kurtz. NEJM. 1996. Jurkovich. J Trauma 1987.

How We Warm

"Cold injures the body while heat injures the spirit..."

-from the Yellow Emperor's Classic of Medicine

History of IH Research

- Hippocrates —snow to wounds
- Baron Larrey
- 1939- Dr. Temple Fay pain control, metastatic disease
- 1954-1959- used in TBI
- 1964 in CPR algorithm (Safar)
- 1960-1970's-↓ interest
- 1980's -animal studies with IH in cardiac arrest
 - Mild/moderate vs deep IH

Who Do We Cool?

Cardiac Arrest with Return of Spontaneous Circulation

350K / yr with OHCA in USA 25% survive to the hospital 70%-80% in-hospital mortality Overall survival 5-8% at 1yr Good neurologic recovery 20-30% of survivors

Neurologic Injury After Cardiac Arrest

Post-Cardiac Arrest Syndrome

Primary and post-arrest brain injury
 Post-arrest myocardial dysfunction

Systemic ischemia-reperfusion response

Don't forget the initial cause of arrest!

Circulation 2008;118:2452

Brain Injury Continues After Reperfusion

Increased:

- Oxygen free radicals
- Neutrophil infiltration
- Calcium sequestration in mitochondria
- Cellular membrane ATPase pump dysfunction
- Metabolic rate/demand
- Vascular permeability
- Loss of autoregulation / Cerebral edema

-She's only **mostly** dead.

Who We Cool

MILD THERAPEUTIC HYPOTHERMIA TO IMPROVE THE NEUROLOGIC OUTCOME AFTER CARDIAC ARREST

THE HYPOTHERMIA AFTER CARDIAC ARREST STUDY GROUP*

TREATMENT OF COMATOSE SURVIVORS OF OUT-OF-HOSPITAL CARDIAC ARREST WITH INDUCED HYPOTHERMIA

STEPHEN A. BERNARD, M.B., B.S., TIMOTHY W. GRAY, M.B., B.S., MICHAEL D. BUIST, M.B., B.S., BRUCE M. JONES, M.B., B.S., WILLIAM SILVESTER, M.B., B.S., GEOFF GUTTERIDGE, M.B., B.S., AND KAREN SMITH, B.SC.

NEJM, February 21, 2002

Neurologic Injury in Out-of-Hospital Arrest

- Multi-center, prospective, randomized
- VF/VT arrest with neuro inj
- IH 32-34° C (12hr for Bernard; 24hr for HACA)
- HACA 6mo outcomes, screened >3500 pt

	N=pts		+Neuro (%)		р	Mortality (%)		р
	IH	С	IH	С		IH	С	
HACA	137	138	55	39	0.009	41	55	0.02
Bernard	43	34	49	26	0.046	51	68	0.14 5

Bernard. NEJM 2002. HACA. NEJM 2002.

European HACA Trial

OUTCOME MEASURE

- Survival with min or mod disability at 6 mo
- 55% IH; 39% C
- Risk ratio for good outcome 1.40 (1.08-1.81)
- Number needed to treat = 6
- Sooner = better
- Complications not statistically significant

Why We Cool

Compare ICU Strategies

<u>Treatment</u>	<u>NNT(mortality)</u>
Low-dose steroid	10
ARDSnet low TV ventilation	on 12
Activated protein C	17
Intensive glycemic control	28
Stroke Aspirin	33
AMI Thrombolytics	37–91*
Hypothermia	6.1-7.0
*Depending on age	

Gropper, Anesth Analg 2004: 99:566 NEJM 2002;346:549

HYPOTHERMIA: Mechanisms of Ischemic Neuroprotection

Improved

BBB stability
Protection against cytoskeletal proteolysis

Decreased:

Metabolic demand-active and basal
Cellular apoptosis
Oxygen free radical production
Neutrophil infiltration
Cytokine and leukotriene production

Lancet 2008;371:1955 Wang GJ. Neuroscience 2002.

2003 ILCOR recommendations

"Unconscious patients with spontaneous circulation after out of hospital arrest should be cooled to 32-34°C for 12-24 hours when the initial rhythm is ventricular fibrillation."

AND

"Such cooling may also be beneficial for other rhythms or in-hospital arrest."

Nolan, JP, Resuscitation, 2003

Lessons

Animal and clinical studies
Earlier is better
Preservative > Resuscitative
Resuscitative > not at all
Fever = worse outcomes
How To Cool

NS + /- chilled •Safety of chilled NS, rapid cooling Truncal cooling •Localized •Not quite ready for prime-time Intravascular

•External pads

MUST CONTROL COOLING

How We Cool

VUMC

From McPherson J, MD. 2010

VUMC Induced Hypothermia Protocol

Induction

- Rapid to 32-34°C
- Sedation, paralyze if necessary to prevent shivering

Maintenance

- Goal temperature 33°C
- Standard 24 hr after ROSC
- ***Suppress shivering***

Rewarming

- Most dangerous period: hypotension, brain swelling, hyperkalemia
- Goal 37°C over 12-24h
- Stop all sedation when normal body temperature is achieved

Cardiac Arrest Patients with STEMI: VUMC

January 2007-May 2010:

- 23 pts with OHCA + STEMI
- All emergent PCI, treated with hypothermia
- 13/23 (57%) survivors
- Support with IABP or VAD required in 10 pts
 - Survival rate 2/10 in this group
- Survival 85% in pts not requiring mechanical support
- Good neurologic outcome 92% of survivors

Traumatic Brain Injury

- TBI deaths = 50,000 pt/yr in US
 30%-70% mortality severe TBI
 Direct neuronal inj
 Secondary inj
 Fever worsens outcome
- Hypothermia decreases ICP

Finkelstein and Alam. J Int Care Med. 2010. Sydenham, E. Cochrane review. 2009 Park E. Canadian Medical Association Journal. 2008. Baena RC. Neurologyl 1997.

Traumatic Brain Injury

Mixed results of RCTs

- Single center trials gen with positive benefit
- Multi-center trials not replicated benefit

Criticisms: Poor control of variables ICU care, complications Hydration/resuscitation Hypotension and rewarming

No increase in mortality

Fox JL. CJEM. 2010. Finkelstein and Alam. J Int Care Med. 2010. Sydenham, E. Cochrane review. 2009

Hypothermia in Traumatic Brain Injury

Reference	Ν	IH	F/U	Good Outcome (%)		р
				IH	С	
Shiozaki, 1993	33	34C/48h	6m0	38	6	NS
Clifton, 1993	46	33C/48hr	3mo	52	36	NS
Marion, 1993	82	33C/24hr	6m0	56	33	0.05
Jiang, 2000	87	34C/3-14d	1yr	47	27	< 0.05
Shiozaki, 2001	91	34C/48hr	3mo	46	59	NS
Clifton, 2001	392	33C/48hr	бто	43	43	NS
Gal, 2002	30	34C/72hr	6m0	87	47	NS
Zhi, 2003	396	33C/1-7d	6m0	62	38	< 0.05
Qiu, 2005	86	34C/3-5d	2yr	65	37	< 0.05
Qiu, 2007	80	34C/4d	1yr	70	48	< 0.05

Traumatic Brain Injury

- Adult RCT ongoing –Japan
- Eurotherm3235 Trial
- AANS Guidelines consider:
 Control of refractory *\ICP* Early induction
 >48hr IH

Park E. Canadian Medical Association Journal. 2008. Liu WG. J Int Med Res. 2006.

Traumatic Spinal Cord Injury

- September, 2007
- NFL player: incomplete cervical SCI
- Tackling player during kick-off return
- Systemic cooling en route to hospital, early decompression, successful recovery

Traumatic Spinal Cord Injury

Animal models only, studies – 1970s-80s Suggested improved outcomes ■ Mixed studies Suggestion of protection as prophylaxis before SC surgery/aortic repair Mixed data, human studies ■ No convincing evidence of benefit ■ To date, no RCTs Not enough evidence to recommend for/against

Resnick, D. (2007) Position statement and evidence based recommendations from the AANS /CNs Joint section on disorders of the spine and trauma

Future

Cold ischemia time in IH ■ Mild – 15min \blacksquare Mod – 20min ■ Deep – 30min Profound – 60min Preservative **Resuscitative** Suspended animation

> Alam HB. J Surg Res. 2005. Safar PJ. Curr Opin Anaesthesiol. 2002.

And the Future is Now...

Trauma patient with hypotension

- Delay vascular collapse, surgical control
- Animal models-improved mortality, fluid limitation+mild IH
- EPR-CAT: Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma multicenter trial
- Pulseless trauma patient, exsanguinating cardiac arrest
- ED thoracotomy, aortic cannula, 10°C, repair, CPB rewarming

Kochanek P Cleveland Clinic Journal of Medicine. (2009). Wu X. J Cereb Blood Flow Metab. 2008 Kim SH. J Trauma. 1997.

Summary

Double-edged sword in trauma IH for neuro injury after OHCA Careful control of challenges of IH Possible TBI Risks/benefits Need for ongoing research Further areas of application

