BMIF 370 Evaluation Methods in Biomedical Informatics
Instructors: Cindy Gadd and Josh Peterson
Fall

Students are introduced to evaluation and experimentation, with exposure to study design, including sampling, appropriate use of controls; data collection, including human subjects research considerations; analysis, including testing for statistical significance, definitions of sensitivity and specificity, ROC plots; and reporting of results. Quantitative and qualitative methods will be covered, as well as methods and issues specific to healthcare settings. The course is not a substitute for in-depth methodology courses, e.g., biostatistics, epidemiology, or qualitative methods, but rather focuses on the basics of using these methods in biomedical informatics evaluation studies; therefore our treatment of some of these methods will be brief/superficial and subsequent coursework will be necessary for thorough understanding and/or application in your own research.

Notes:
1. One 3-hour class per week
2. Prerequisites: BMIF 300 and Biostatistics
3. Other Readings for Class Discussion drawn from publications and examples from current research of students, faculty, others
4. Course will be taught using a team approach: CG, JP, and guest lecturers, including Laurie Novak (LN) and Josh Denny (JD).

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Subtopics</th>
<th>F&W Chapter</th>
<th>Other Readings for Class Discussion</th>
<th>Lead Instructor</th>
<th>Homework Assignments</th>
</tr>
</thead>
</table>
| 1 | Overview of Evaluation Methods in Biomedical Informatics and this Course | 1. Evaluation in Biomedical Informatics
2. Evaluation as a field
3. Course objectives and mechanics | 1 | Campbell et al. GJIM 2008
Dexter et al. NEJM 2001 | CG/JP |
| 2 | Approaches to Evaluation and Study Design Overview | 1. Measurement
2. Demonstration | 2 & 3 | Stead et al. JAMIA 1994
Friedman JAMIA 1995
Friedman JMLA 2005 | CG | Self-tests 2.1, 2.2, 3.1 Due |
<p>| 3 | Measurement Study Methods | 1. Reliability and validity in measurement | 4 & 5 | | CG | Self-tests 4.1, 4.4, 4.4, 5.1, 5.4, 5.5 Due |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Subtopics</th>
<th>Page References</th>
<th>Readings/Notes</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| 4 | Proposals | 1. Guide to writing proposals
2. Overview of course project requirements | 12, pp. 338-346 | PHS 398 and sample proposals
CG/JP | Survey Exercise Assigned |
| 4 | Surveys – Development and Use | 1. Improving measurement capabilities
CG | Survey Exercise Due |
| 5 | Introduction to Demonstration Study Design | 1. Overview
2. Error | 7 | “AMIA Informatics 2009 Year in Review”
http://dbmichair.mc.vanderbilt.edu/amia2009/
JP | Project: Abstract Due |
| 5 | Design Issues in Comparative Informatics Trials| Randomized and nonrandomized trials
2. Adjudication
3. Diagnostic testing | | CONSORT:
http://www.consort-statement.org/consort-statement/
TREND:
http://www.cdc.gov/trendstatement/
JP | Study Design Exercise 1 Due |
| 6 | Demonstration Study Methods – Design | 1. Reference standards
2. Adjudication
3. Diagnostic testing | 6 | Hripcsak et al. JAMIA 2002
JP | Project: Abstract Due |
http://mcapps01.mc.vanderbilt.edu/IRB/policy&procedures.nsf
JP/CG | Study Design Exercise 2 Due |
| 7 | Demonstration Study Methods – Analysis | 1. Power
2. Measures of association
3. Statistical significance | 8 | Readings TBA
JP | Study Design Exercise 1 Due |
| 8 | Demonstration Study Methods – Introduction to Multivariate Analysis | - | - | Readings TBA
JP | Study Design Exercise 2 Due |
<table>
<thead>
<tr>
<th>9</th>
<th>Comparative Effectiveness Research</th>
<th>-</th>
<th>Readings TBA</th>
<th>TR</th>
<th>Project: Outline & Literature Review Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Project Overviews</td>
<td>-</td>
<td></td>
<td></td>
<td>Project: Discuss Proposals in Class</td>
</tr>
<tr>
<td>11</td>
<td>Subjectivist Approaches</td>
<td>9</td>
<td>Forsythe. Medical Anthropology Quarterly 1996.</td>
<td>CG</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Performing Subjectivist Studies</td>
<td>10</td>
<td>Jordan, Nemeth, and Patterson</td>
<td>LN</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Multi-Method Approaches & Economic Aspects of Evaluation</td>
<td>11</td>
<td>Kaplan & Duchon</td>
<td>LN</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Special Topics in Evaluation Methods</td>
<td></td>
<td>Readings TBA</td>
<td>JD</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Final Project Presentations</td>
<td></td>
<td></td>
<td></td>
<td>Project: Presentations in Class; Proposal Due</td>
</tr>
</tbody>
</table>

Graded Assignments:
1. Term Project: Students will develop individual evaluation study proposals for a real project (e.g., MS thesis) – break it down into components/milestones w/ due dates for feedback (from instructors, peers) over the term and final proposal due at end of term – more information will be provided.
2. Homework Assignments: a) Self-tests (in text) and problem sets will be used to exercise mastery of concepts and methods throughout the course; b) Critiquing one or more published evaluation studies will demonstrate understanding of study design, methods, analysis of results, and reporting.
3. Class Participation: a) Each class will have 1-2 featured publications, from which one student will be responsible for presenting the key points to the class – students will not know in advance who will be presenting each class so all will be prepared to discuss; b) Understanding of topics and willingness to explore/challenge concepts, as demonstrated by class participation throughout the course.