Building pipeline-based NLP systems for your applications

Hua Xu

School of Biomedical Informatics, University of Texas Health Science Center at Houston
Disclosure

• I receive grant funding from:
 – NIH: NLM, NIGMS, NCI
 – CPRIT (Cancer Prevention and Research Institute of Texas)

• I have been a consultant for:
 – Hebta LLC
What Is NLP?

• Broad Definition – any system that manipulates text or speech. It could involve various degrees of linguistic knowledge.

• NLP Systems
 – Natural Language understanding
 – Natural Language extraction
 – Natural Language generation
 – Machine translation
 – NLP-based information retrieval
 – NLP-interfaces
Study of Natural Language

• Human language (vs. formal and computer language)
• Linguistics - a description of language - used by theoretical linguists.
• Psycholinguistics - a cognitive model of how people understand and generate language.
• Computational linguistics - build computational models to understand and generate language.
Computational Linguistics

♦ An interdisciplinary field dealing with the statistical and/or rule-based modeling of natural language from a computational perspective

– Driven by need to process natural language – convert to structured form for further computerized processes

– Computational model is not necessarily same as human model - we don’t understand much about human language facility
Overview of Linguistic Levels

- **Phonology**: units of sound combine to produce words (will not cover)
- **Morphology**: basic units combine to produce words
- **Lexicography**: syntactic (part of speech) and semantic categories of words
- **Syntax**: structures combine to produce sentences
- **Semantics**: meaning/interpretations
- **Discourse**: previous information affects the interpretation of the current information
- **Pragmatic**: context or world knowledge affects the interpretation of meaning
Morphology

- **Definition:** The study of how words are composed from smaller, meaning-bearing units (morphemes)
 - **Inflection:** Word stem + grammatical morpheme
 - like → likes, liked, liking
 - **Derivation:** Word stem + syntactic/grammatical morpheme
 - generalize → generalization
 - **Compounding:** Two base forms join to form a new word
 - bedtime

- **Application:** spelling check, stemming, POS tagging, speech recognition
Lexicography - Words

♦ Recognize word – Tokenization (determine the word boundary)
♦ Identify word – Lookup (map to dictionary entry)
♦ Categorize word – Tagging
 – Syntactic – Assign Part-of-Speech Tags
 – Semantic – Assign semantic categories
Syntax - Sentences

♦ Definition: study of the structure of a sentence.
 – Categories combine with others to produce a well-formed structure with underlying relations

♦ Difficulties: ambiguous, nesting, omitted structures
 – pain in (hands and feet) vs. (pain in hands) and fever

♦ Parsing – determining syntax
 – Formalisms: regular expressions vs. context-free grammar
 – Partial vs. full parsing
Semantics

♦ Lexical level – to determine the meaning of a word
 ♦ Semantic categories of a word
 • Abdomen – body location
 • Fever – symptom
 • pt – labtest (prothrombin time assay) vs. treatment (physical therapy)
 ♦ Word sense disambiguation

♦ Grammatical level - word senses in a structure combine to form a meaning of the whole structure
Discourse

♦ Previous information in text affects current text
 – Correct reference for pronouns, definite noun phrases, bridging noun phrases.
 • Mass noted in left upper lobe. It was well-margined.
 – Time of events
 – Determining topic
 – Coherence of text
Pragmatics

♦ Context affect meaning
 – Domain: A mass was observed
 – Section of Report: past history vs. hospital course
 – Prior information

♦ World knowledge affects interpretation
 – He couldn’t do any trading on the past Monday. (Market was closed on President Day - Monday.)
It’s all about Ambiguity!

- **POS tagging** - saw (noun vs. verb)
- **Semantic tagging** - pt (patient, physical therapy, prothrombin time assay)
- **Syntactic parsing** - *The patient had pain in lower extremities.* vs. *The patient had pain in emergency room.*
Most of current clinical NLP systems are information extraction systems

- **General-purpose**
 - MedLEE
 - MetaMap
 - cTAKES
 - KnowledgeMap Concept Identifier
 -

- **Specific-purpose**
 - MIST – the MITRE identification scrubber toolkit
 - MedEx – medication information extraction
 -
Pipeline-based architecture

cTAKES (clinical Text Analysis and Knowledge Extraction System) UIMA (Unstructured Information Management Architecture) annotation flow of side effect pipeline.

Source: Sohn et al. JAMIA, 2011
Demo of building clinical NLP pipelines using CLAMP

• Clinical Language Annotation, Modeling, and Processing Toolkit (CLAMP)
• Demo 1 – determine smoking status using rule-based approaches
• Demo 2 – extract lab names using a hybrid approach that combines machine learning and rules
Introduction to CLAMP

- A general purpose clinical NLP system built on proven methods

<table>
<thead>
<tr>
<th>NLP Tasks</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Named entity recognition</td>
<td>2009 i2b2, medication #2</td>
</tr>
<tr>
<td></td>
<td>2010 i2b2 problem, treatment, test #2</td>
</tr>
<tr>
<td></td>
<td>2013 SHARe/CLEF abbreviation #1</td>
</tr>
<tr>
<td>UMLS encoding</td>
<td>2014 SemEval, disorder #1</td>
</tr>
<tr>
<td>Relation extraction</td>
<td>2012 i2b2 Temporal #1</td>
</tr>
<tr>
<td></td>
<td>2015 SemEval Disease-modifier #1</td>
</tr>
<tr>
<td></td>
<td>2015 BioCREATIVE Chemical-induced disease #1</td>
</tr>
</tbody>
</table>

- An IDE (integrated development environment) for building customized clinical NLP pipelines via GUls
 - Annotating/analyzing clinical text
 - Training of ML-based modules
 - Specifying rule
What does CLAMP address?

• The Transportability Problem of NLP
 – From one type of clinical notes to another
 – From one institute to another
 – From one application to another

• Need a solution for non-NLP experts to efficiently build high-performance NLP modules for individual applications!
CLAMP Demo 1

• Build a rule-based system to extract smoking status from clinical text
• Input: sentences containing patient smoking information
• Output: three types of status for each smoking mention:
 – Current Smoker: She has a prior history of smoking although not currently
 – Past Smoker: She is continuing to smoke
 – Non-Smoker: She denies any tobacco use, alcohol use
CLAMP Demo 2

• Build a hybrid (machine learning + rules) system for extracting lab test concepts from clinical text

• Input: discharge summaries

• Output: lab test concepts mentioned in the text with attributes of:
 – Offsets
 – Negation
 – UMLS CUIs
CLAMP Availability

• CLAMP is available in two versions:
 – CLAMP CMD (free)
 – CLAMP GUI (depends on the license)

https://sbmi.uth.edu/ccb/resources/clamp.htm

• It is not an open source software, but source codes are available for collaborators with appropriate licenses.

• We are looking for collaborators to co-develop the system! If interested, please contact: Hua.Xu@uth.tmc.edu
Thank you!

Questions?

hua.xu@uth.tmc.edu