Chapter: Clinical Practice

Policy: Pediatric Burn Hypermetabolic Protocol

Approval Date: 12/10/19 CMT
Review Date: 1/1/2021

Applicable to

☐ VUH ☒ VCH □ DOT □ VMG Off-site locations □ VMG □ VPH □ Other

Team Members Performing

□ All faculty & staff providing direct patient care or contact
☒ Faculty & staff MD ☒ House Staff ☒ APRN/PA ☒ RN □ LPN

Content Experts

Authors: Ryan Stark, M.D.
Assistant Professor of Pediatrics
Division of Critical Care
Department of Pediatrics

Daniel Barrett, APRN, MSN
Division of Critical Care
Department of Pediatrics

Table of Contents

I. Population: ... 2
II. Assessment: ... 2
III. Intervention/Treatment: ... 2
IV. Other Considerations: .. 3
V. References: ... 3
I. Population:

The hypermetabolic response in burn patients is characterized by hyperdynamic circulatory, physiologic, catabolic, and immune system responses.

The administration of agents that reduce the hypermetabolic response is an essential component of the management of pediatric burns.

II. Assessment:

Hypermetabolic management should be considered if a patient meets the following criteria:

1. TBSA greater than 20%
2. Will require at least one operation
3. >72 hour after admission
4. Hemodynamically stable (not on pressers or requiring fluid boluses)

III. Intervention/Treatment:

Propranolol

1. Mechanism: Propranolol attenuates the hypermetabolism and reverses muscle-protein catabolism.2
2. Benefits: reductions in heart rate, cardiac work, lipolysis, hepatic steatosis, and skeletal muscle breakdown, and increased creation of skeletal muscle.

<table>
<thead>
<tr>
<th>Propranolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dose</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Oxandrolone:

1. Mechanism: The use of oxandrolone, an analog of testosterone possessing only 5% of its virilizing androgenic effects, enhances anabolism of muscle protein by improving the efficiency of protein synthesis.4
2. Benefits: Oxandrolone decreases loss of body weight and improves healing of the donor site wound.5

<table>
<thead>
<tr>
<th>Oxandrolone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
</tr>
</tbody>
</table>
IV. Other Considerations:

Nutrition:
Adequate nutrition is imperative for the treatment of severely burned and critically ill patients to reduce the catabolic effects of burn injury. The Burn Nutrition Protocol should be followed.

Pain Management:
Pain management is important to decrease the hypermetabolic response. See the Pediatric Burn Protocol for recommendations.

Glycemic Control:
Glycemic control in critically ill patients leads to lower incidences of sepsis and mortality compared with patients who had poor glucose control. Monitor blood glucose levels and consider insulin for ICU level burn patients.

Duration of Administration:
Burn-induced hypermetabolic response lasts for at least 1 to 2 years after the injury.\(^5\)\(^,\)\(^6\)\(^,\)\(^7\) Continuation of propranolol and oxandrolone after discharge should be considered when primary care is established.

V. References:

