VANDERBILT 💱 UNIVERSITY

MEDICAL CENTER

VANDERBILT 🚺 UNIVERSITY

MEDICAL CENTER

Guideline: Burn Unit Adult Venous Thromboembolism (VTE) Prophylaxis

Revised Date: November 2022 Review Date: November 2024

Content Experts

Anne Wagner, MD Sarah Cogle, PharmD

Table of Contents

١.	Purpose	. 2		
11.	Risk Factors	. 2		
III.	Physical Exam Findings	. 2		
IV.	Lab and Radiology Findings	. 2		
V.	VTE Prophylaxis Protocol for Burn Patients	. 2		
VI.	Exceptions to the VTE Prophylaxis Protocol	. 2		
VII.	LMWH (Anti-Xa) Level Monitoring	. 3		
VII.	IVC Filter Placement	. 3		
IX.	References	. 3		

VANDERBILT 🚺 UNIVERSITY

MEDICAL CENTER

I. Purpose

Ρ

To prevent pulmonary embolism (PE) and deep vein thrombosis (DVT) in burn patients

II. Risk Factors

Risk Factors	High Risk Factors	Very High Risk Factors
• Burn 10-19% TBSA	• Burn 20-39% TBSA	● Burn ≥40% TBSA
 Age > 40 years 	 Inhalation injury 	 Spinal cord injury with
 Central venous access 	 Age > 60 years 	paraplegia or quadriplegia
• ISS > 9	• ISS > 15	 Complex or multiple (≥2)
 Blood transfusions 	 GCS < 9 for > 4 hours 	lower extremity fractures
 Surgical procedure within 72 	 Major venous injury/repair 	 Major pelvic fracture
hrs	 PMH of venous 	 Multiple (≥ 3) long bone
 Immobilization 	thromboembolism (VTE)	fractures (≥ 1 in the lower
 Malignancy 	 Lower extremity fracture 	extremity)
 Extensive soft tissue trauma 	 Multiple spinal fractures 	 Age ≥75 years with any high
 Hormone therapy 	 Pregnancy 	risk factor)
• Obesity		 COVID-19 positive
 AIS ≥ 3 (any region) 		

III. VTE Prophylaxis Protocol for Burn Patients

A. All burn patients, unless otherwise specified, should receive VTE prophylaxis with weight-based enoxaparin (Lovenox) on admission.

Current patient weight	SUBQ Enoxaparin initial dose	Routine LMWH Level Monitoring Required
<50 kg	30 mg q12h	Yes
50 – 89 kg	30 mg q12h	No
90 – 129 kg	40 mg q12h	Yes
130 – 179 kg	60 mg q12h	Yes
≥ 180 kg	80 mg q12h	Yes

- B. If receiving subcutaneous heparin, patients with a BMI ≥ 40 kg/m² and who do not have an epidural catheter or paravertebral block in place, a higher dose of 7500 units q8h is recommended.
- C. VTE prophylaxis should NOT be held for patients with an elevated baseline INR due to liver dysfunction.
- D. No doses of VTE prophylaxis will be held for operative procedures unless requested by the operating attending.

VANDERBILT 🚺 UNIVERSITY

MEDICAL CENTER

IV. Exceptions to VTE Prophylaxis Protocol

A. Renal Impairment

Ρ

- For patients with a significant rise in SCr (> 50%) or a creatinine clearance < 30 mL/min, enoxaparin may be renally adjusted to once daily dosing or subcutaneous heparin 5000 units Q 8 hrs may be substituted for enoxaparin.
- For patients on renal replacement therapy, subcutaneous heparin 5000 units Q 8 hrs isrecommended over enoxaparin.
- B. Epidural or Paravertebral Block Placement
 - Enoxaparin will not be used 12 hours prior to epidural or paravertebral block placement, while the catheter is indwelling, or for 4 hours after removal.
 - Subcutaneous heparin 5000 units q8h and sequential compression devices (SCDs) may be substituted for enoxaparin during the indwelling time.

V. LMW Heparin (Anti-Xa) Level Monitoring

- A. A LMW Heparin level should be drawn in patients with the following characteristics:
 - a. Burn ≥20% TBSA
 - b. Weight <50 kg or \geq 90 kg
 - c. Spinal cord injury with paraplegia, quadriplegia
 - d. Patients with concomitant trauma meeting criteria per trauma division's Guideline
 - e. Renal dysfunction (SCr increased >50% from baseline or CrCl <30 mL/min)
- B. LMW Heparin (Anti-Xa) level peaks should be drawn 4 hours after the administration of the third dose of enoxaparin.
 - a. To order in Epic: LMW Heparin Level (must time correctly)
 - b. Goal peak is 0.2 to 0.4 IU/mL.
 - If LMW Heparin level is drawn appropriately and below the goal range, increase the dose to the next syringe size.
 - If LMW Heparin level is drawn appropriately and above goal range, decrease to the next syringe size. Doses other than standard syringe sizes should not be ordered.
 - If already at 30 mg Q12 hr, reduce to 30 or 40 mg q 24h.
 - If anti-Xa level remains above goal range despite changing to q24h dosing, then change to subcutaneous heparin.
 - c. Once the goal range is reached, no further monitoring needed. Consider rechecking LMW Heparin level every 2 weeks in patients on longer durations of therapy or sooner if significant changes in renal function occur.

VI. Surveillance

A. Routine lower extremity duplex ultrasound should be completed 72 hours after admission and weekly thereafter in patients who are in the very high-risk factor group

VII. IVC Filter Placement

- A. A prophylactic IVC filter may be considered in high risk burn patients with a contraindication, failure, or complications of anticoagulation
- B. Indications for a therapeutic IVC filter include patients with a known PE or lower extremity DVT and a contraindication, failure, or complication of anticoagulation, among other indications.
- C. Placement of IVC filter does not prevent PEs but prevents large clots from traveling from lower extremities. Once patients are stable, they will still require anticoagulation as long as the filter is in place.

VANDERBILT 🚺 UNIVERSITY

MEDICAL CENTER

VIII. References

P

- 1. Sikora S, Papp A. Venous thromboembolism in burn patients is not prevented by chemoprophylaxis. *Burns: journal of the International Society for Burn Injuries.* 2017;43(6):1330-1334.
- 2. Pannucci CJ, Osborne NH, Wahl WL. Venous thromboembolism in thermally injured patients: analysis of the National Burn Repository. *Journal of burn care & research: official publication of teAmerican Burn Association*. 2011;32(1):6-12.
- 3. Meizoso JP, Ray JJ, Allen CJ, et al. Hypercoagulability and venous thromboembolism in burnpatients. *Seminars in thrombosis and hemostasis*. 2015;41(1):43-48.
- 4. Pannucci CJ, Obi AT, Timmins BH, Cochran AL. Venous Thromboembolism in Patients with Thermal Injury: A Review of Risk Assessment Tools and Current Knowledge on the Effectiveness and Risks of Mechanical and Chemical Prophylaxis. *Clinics in plastic surgery*. 2017;44(3):573-581.
- 5. Van Haren RM, Thorson CM, Valle EJ, et al. Hypercoagulability after burn injury. *The journal oftrauma and acute care surgery*. 2013;75(1):37-43; discussion 43.
- 6. Lin H, Faraklas I, Cochran A, Saffle J. Enoxaparin and antifactor Xa levels in acute burn patients. *Journal of burn care & research: official publication of the American Burn Association.* 2011;32(1):1-5.
- 7. Lin H, Faraklas I, Saffle J, Cochran A. Enoxaparin dose adjustment is associated with low incidence of venous thromboembolic events in acute burn patients. *The Journal of trauma*.2011;71(6):1557-1561.
- Kaufman EJ, Ong AW, Cipolle MD, et al. The impact of COVID-19 infection on outcomes after injury in a state trauma system. *J Trauma Acute Care Surg*. 2021;91:559-65.
- 9. Rojas L, Aizman A, Ernst D, et al. Anti-Xa activity after enoxaparin prophylaxis in hospitalized patients weighing less than fifty-five kilograms. *Thrombosis Research*. 2013;132:761-64.
- 10. Cronin BJ, Godat LN, Berndtson AE, et al. Anti-Xa guided enoxaparin dose adjustment improves pharmacologic deep venous thrombosis prophylaxis in burn patients. *Burns*. 2019;45:818-24.
- 11. McKinzie BP, Nizamani R, Jones S, et al. Single-center experience with venous thromboembolism prophylaxis for obese burn patients. *Journal of Burn Care & Research*. 2021;365-68.