VANDERBILT VUNIVERSITY				
MEDICAL CENTER				
	Category	Clinical Practice		
Protocol: Burn Critical Care Electrolyte				
Replacement	Approval Date:	12/17/2019 (CMT)		
	Review Date:	1/2022		

		A	۱pp	licable to				
⊠ VUH □ Ch	ildren's 🛛 DOT		G 0	ff-site location	s □	VMG	□ VPH	□ Other
		Team M	[em	bers Performi	ng			
 □ All faculty ⊠ & staff □ Other: 	Faculty & staff providing direct patient care or contact	⊠ MD		House Staff		APRN/PA	⊠ RN	□ LPN
		Co	onte	nt Experts				
Lead Author:	Callie Tho Galileo Mo	mpson, N cInnis, AC	ID NP					

Table of Contents

I. Purpose:
II. Population: 2
III. Potassium Replacement: 2
IV. Magnesium Replacement:
V. Phosphorus Replacement:
VI. Calcium Replacement: 4
VII. Hypernatremia Management/Considerations: 5
VIII. Hyponatremia Management/Considerations:
IX. Hyperkalemia Management/Considerations10
X. References13

I. Purpose:

Provide standardization in the electrolyte replacement of patients admitted to the Vanderbilt Burn Center.

II. Population:

Adult patients admitted to Vanderbilt Regional Burn Center

III. Potassium Replacement (Provider Driven Only)

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, electrical burns where rhabdomyolysis is present, rhabdomyolysis, DKA, crush injury, hypothermic patients or those with active transfer orders out of the ICU.

Always review or draw a phosphorus level to determine the appropriate potassium repletion product.

Serum K+	Replace with	Recheck level
3.3-3.9 mEq/L	40 meq KCL PO/PT /IV (enteral route preferred if available)	With next set of AM labs
3.0-3.2 mEq/L	60 meq KCL PO/PT/IV (IV route preferred)	Immediately and with next AM labs
2.6-2.9 mEq/L	80 meq KCL IV and NHO	Immediately and with next AM labs
< 2.6 mEq/L	100 meq KCL IV and NHO	Immediately and with next AM labs

Consider PO/PT replacement if GI tract is available

VANDERBILT 🦭 UNIVERSITY

MEDICAL CENTER

- If central line present and continuous cardiac monitoring, infuse at 20mEq/hr (max=20mEq/hr).
- If peripheral access only, infuse slowly at 10mEq/hr and have nursing monitor for extravasation.
- Serum K+ level may be expected to increase by ~0.25mEq/L for each 20mEq IV KCL infused
- All burn patients (apart from the exemptions aforementioned) that are undergoing excision and grafting should have potassium levels replaced prior to the OR.

IV. Magnesium Replacement (Provider Driven Only)

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, electrical burns where rhabdomyolysis is present, rhabdomyolysis, DKA, crush injury, hypothermic patients or those with active transfer orders out of the ICU.

Special considerations: If there are concerns for re-feeding syndrome, labs may need to be rechecked/replaced numerous times within a 24-hour period.

Serum Magnesium	Replace with	Recheck level
1.3-1.9 mg/dL	4 grams IV over 4 hours	No indication to re check unless persistent diarrhea/vomiting
<u><</u> 1.2 mg/dL	8 grams IV over 8 hours	Re-check level 6 hours after replacement

IV administration:

- Magnesium replacement will be one-time doses
- Infuse at rate of 1gram/hr

Provider considerations for initiating oral administration:

- It should be considered in burn patients that have persistently low mag levels despite adequate repletion via the IV route. This will be guided by the ICU intensivist
- If elemental magnesium (supplied as magnesium oxide) or milk of magnesia is initiated, diarrhea may be a limiting factor. Separate orders must be entered into Epic for oral replacement at discretion of the ICU intensivist.

V. Phosphorus Replacement (Provider Driven Only) only for phos level of 2.5mg/dL or lower

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, electrical burns where rhabdomyolysis is present, rhabdomyolysis, DKA, crush injury, hypothermic patients or those with active transfer orders out of the ICU.

MEDICAL CENTER

Always review or draw a phosphorus level to determine the appropriate phosphorus repletion product

Special considerations: If there are concerns for re-feeding syndrome, labs may need to be rechecked/replaced numerous times within 24 hours period

Product	Phosphate	Potassium	Sodium
K- Phos Neutral	250mg (8mmol)	1.1 mEq	13 mEq
Tablet			
K-Phos Injection	3 mmol/mL	4.4 mEq	
(per mL)			
Na Phos Injection	3 mmol/mL		4 mEq
(per mL)			-

Serum Phos	Replace With	Repeat Level	mEq K if K Phos
2.0-2.5mg/dL	15 mmol KPhos or NaPhos	With next AM	~ 22 mEq (~ 5.5
	IV	labs	mEq/hr based on 4-
	-or-		hour infusion)
	K-Phos Neutral 2 tabs		
	PO/PT q4hrs x3 doses		
	(enteral route preferred)		
1.6-1.9	30 mmol Kphos or NaPhos	With next AM	~ 44 mEq (~ 11
mg/dL	IV	labs	mEq/hr based on 4-
_	-or-		hour infusion)
	K-Phos Neutral 2 tabs		
	PO/PT q4hrs x4 doses (IV		
	route preferred)		
< 1.6 mg/dL	45 mmol Kphos or NaPhos	6 hours after	~ 66 mEq (~ 16.5
	IV	replacement	meq/hr based on 4-
			hour infusion)

- Always look at the potassium level to determine appropriate IV phosphorus product for use: use KPhos if K <4.0mEq/L and Na Phos if K > 4.0 mEq/L
- For IV replacement: pharmacy will dilute in 250mL NS or D5W. Infuse over 4-6 hours
- For PO/PT replacement: K-Phos neutral tablet (current agent or formulary at VUMC)
- Those who are intubated/trach on vent should have a minimum of phos level checked bi-weekly until phos no longer requires frequent repletion

VI. Calcium Replacement (Provider Driven Only)

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, electrical burns where rhabdomyolysis is present, rhabdomyolysis, DKA, crush injury, hypothermic patients or those with active transfer orders out of the ICU.

VANDERBILT **V**UNIVERSITY MEDICAL CENTER

Special considerations: if there are concerns for re-feeding syndrome, labs may need to be rechecked/replaced numerous times within a 24hour period. Burn patients that are greater than 20% may require preop repletion or postop repletion.

Calcium replacement based upon Ionized Calcium Levels			
Ionized Calcium	Replace with	Recheck Level	
3.5-3.9	4 grams Ca Gluconate	With next AM labs	
3.0-3.4 mg/dL	6 grams of Ca Gluconate	4 hours after	
		replacement	
2.5-2.9 mg/dL	8 grams Ca Gluconate	4 hours after	
		replacement	
< 2.5 mg/dL	10 grams Ca Gluconate	4 hours after	
	+NHO	replacement	

• Infuse Calcium gluconate at a rate of 2 grams per hour.

VII. Hypernatremia Management/Considerations

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, or worsening acute renal failure. These patients should have other ancillary teams or be in collaboration with their cardiologist or nephrologist for guidance. >20% TBSA in ongoing fluid resuscitation within the first 24-72 hours and those in the initial phases of excision/debridement.

Step 1: Determine if acute vs chronic. Acute is defined as <48-hour period, chronic is >48 hours **Step 2 (Caution)**: Never correct sodium levels more than 12mmol in a 24-hour period for acute hypernatremia. Never correct sodium levels >8mmol/24 hours for chronic hypernatremia. It can be fatal.

Step 3: Assess current fluid volume status and proceed to simple algorithm below:

<u>Drugs-</u> some common drugs that cause hypernatremia: 0.9% NaCl infusions, Lactated Ringers, IV antibiotics such as ciprofloxacin, voriconazole, ceftriaxone, cefazolin

Dehydration/Diarrhea- Burn patients >20% suffer from catabolism, this can lead to renal losses. Excessive diarrhea also can contribute to extrarenal water losses.

<u>Diabetes Insipidus (central or nephrogenic)</u> consider this in patients who suffer from trauma or head injuries. Nephrogenic causes include drugs like lithium, amphotericin B, or antiviral drugs

DI diagnosis- polyuria defined as 24 hours of UOP equivalent to 2.5L/24 hours or 40ml/kg/day in the setting of a high sodium level and a serum osom higher than urine osom. Consult endocrine for further eval including potential use of desmopressin testing.

Diuretic therapy-loop diuretics

Step 4 (Diagnostics): Interpret diagnostic data to determine type of hypernatremia (hypovolemic, euvolemic, or hypervolemia). See table referenced immediately below. * **Of note, diagnostic testing is not indicated if the cause can be determined off history/PE findings.**

VANDERBILT 💱 UNIVERSITY

Adult Stress Ulcer Prophylaxis

MEDICAL CENTER

Labs	Hypovolemic Hypernatremia	Euvolemic Hyperpatremia	Hypervolemic Hypernatremia
Urine Osom level	> 600 mOsm/kg	$\sim 300 \text{ mOsm/Kg}$	ny per nati enna
Office Osofii level	> 000 mosm/kg	< 500 mOsm/ Kg	
Serum Sodium	> 145meq/L	> 145meq/L	>145meq/L
level			
Urine Sodium level	< 20 meq/L	variable	>20 meq/L
Clinical	Recent diuretic use, Recent	Central/nephrogenic	Recent sodium
considerations for	mannitol use, lack of enteral free	DI? Antibiotics?	Bicarb
differentiating	H20 replacement, diarrhea,		administration,
between each	dehydration, Correct glucose		Hypertonic saline
Hypernatremia	levels in those w/ DKA		admin

Step 5 Treatment Considerations: Always treat the underlying cause. The intensivist should guide the treatment portion/management section. Labs should be drawn at minimum every 6-12 hours toe valuate changes in serum sodium levels when implementing changes that can affect Na2+ levels.

Hypovolemic Hypernatremia	Euvolemic Hypernatremia	Hypervolemic Hypernatremia
*Initial fluid resuscitation with crystalloid	- consider 5% dextrose <u>+</u> loop diuretics	- Consider 5% dextrose + loop diuretic
- Consider free H20 replacement per tube if route available	- Considering removing medications such as lithium/Dilantin	- Consider discontinuing the offending agents such as bicarb drip or
- If PO route not available consider		hypertonic saline if
5% dextrose/half isotonic saline	- if central DI suspected then	
	place endocrine consult after	
- if diuresis consider stopping the	ordering diagnostics for	
diuretic	desmopressin use	

VIII. Hyponatremia Management/Considerations

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, or worsening acute renal failure. >20% TBSA in ongoing fluid resuscitation within the first 24—72hours and those in the initial phases of excision/debridement.

Considerations: Those with HF and chronic renal insufficiency should resume their diuretics if stable and in the perioperative period.

Definitions:

• Acute hyponatremia-developed within a 24-48-hour time frame

VANDERBILT VUNIVERSITY MEDICAL CENTER

- Chronic hyponatremia-a chronic issue occurring pre hospital or for 72 hours or more during hospital stay. Typically prevalent in HF, renal failure, liver cirrhosis, patients with ascites.
- High risk Osmotic Demyelination Syndrome (ODS)-Alcoholism, hypokalemia, cirrhosis, malnutrition or liver disease
- Severe symptomatic hyponatremia-sodium levels decrease within <24 hours and typically occur when sodium level is <120meq/l (can occur at 125meq/l). Symptoms include seizures, coma, and neurological disturbances like AMS.

Algorithm

Step 1: Determine if acute vs chronic. Acute is defined as <48-hour period, chronic is > 48 hours **Step 2 (Caution):** Never correct sodium levels more than 10mmol in a 24-hour period for acute hyponatremia. Never correct sodium levels > 10mmol/24 hours for chronic hyponatremia or >6mmol/24 with high risk ODS. Risks can be debilitating.

Step 3: Assess current fluid volume status & proceed to simple algorithm below

Step 4 (Diagnostics): Interpret diagnostic data to determine type of hyponatremia (hypovolemic, euvolemic, or hypervolemia). See table referenced immediately below.

Adult Stress Ulcer Prophylaxis

VANDERBILT 💱 UNIVERSITY

MEDICAL CENTER

Labs	Hypovolemic	Euvolemic	Hypervolemic
	Hyponatremia	Hyponatremia	Hyponatremia
Serum Osom	< 280 mOsm/kg	< 280-295	>295mOsm/kg
		mOsm/Kg	
ECF volume	Decreased	Normal	Elevated
Serum Sodium	< 135meq/L	< 135meq/L	< 135meq/L
Urine sodium (may be	< 20 to 30 mmol/L	<u>></u> 20-30mmol/L	< 20-30meq/L
occur elevated in cases			
of diuretic therapy)			
Other labs to consider	If uric acid level known, it	If SIADH	Elevation of BNP
for each type:	will be elevated	suspected Urine	support volume overload
		osom >100	
		mosm/kg	
Clinical considerations	Vomiting, Diarrhea,	Lack signs of	Presence of excess
for differentiating the	orthostatic vitals +, mucous	volume depletion	intravascular volume
type:	membranes dry. BUN/Cr+	or volume	utilizing history, PE,
	may be elevated. Recent	expansion (edema	signs of volume overload
	thiazide use or those with	or ascites).	(edema, ascites,
	high urinary output and	Consider SIADH.	pulmonary edema.
	underlying brain pathology	BUN/Cr+ may be	
		normal to low	

Step 5 Treatment Considerations: Always treat the underlying cause. The intensivist should guide the treatment portion/management section. See general causes/treatment considerations in the table below.

Hypovolemic Hyponatremia	Euvolemic Hyponatremia	Hypervolemic Hyponatremia
Due to:	Due to:	Due to:
- Diuretics: withhold diuretics	- Drug induced SIADH:	- HF: Consider dietary sodium
& replete patient w/ isotonic	eliminate the offending	restriction and diuretic therapy w/ loop
fluid	med	diuretics. If pt has stable home regimen
		with diuretics and they have been held
- Hypokalemia: correct	- SIADH: consider vaptans	in the perioperative/operative period
hypokalemia	and endocrinology	resume. Fluid restriction may also be
		implemented
- Cerebral Salt wasting: NaCl	- Due to ETOH	
tablets or Hypertonic saline if	intoxication: nutrition	- Renal Failure: Fluid restriction may
Sodium < 131. Neurology	consultation for increasing	be implemented, if dialysis patient
should be consulted for	protein and possible ETOH	continue with regimen per nephrology
underlying pathology and use	consultation.	team
of steroids		
		-Hepatic failure/cirrhosis: may benefit
- GI losses: IV fluids		from sodium restriction, diuretic therapy

VANDERBILT VUNIVERSITY

Adult Stress Ulcer Prophylaxis

MEDICAL CENTER

- Mineralocorticoid deficiency: identify cause with cortisol testing and proceed to the proper steroid replacement. Consider endocrinology consultation	and large volume paracentesis. Spironolactone along w/ a loop diuretic is recommended. Consider hepatology involvement
- Osmotic diuresis secondary to DM or profound glucose elevations: correct glucose level	

Step 6: Review severe symptoms algorithm

IX. Hyperkalemia Management Considerations

Exclusions: Patients with the following: hemodialysis/peritoneal dialysis, creatinine clearance <20ml/min, chronic adrenal insufficiency, or worsening acute renal failure or >20% TBSA undergoing fluid resuscitation (unless ECG changes or symptoms of hyperkalemia occur). Patients with renal failure or dialysis should have other ancillary teams involved for guidance of treatment unless ECG changes/life threatening arrhythmias develop then emergent treatment is indicated.

Algorithm

Step 1: Confirm that the lab is not result of gross hemolysis or error
Step 2 (Caution): always correct the underlying cause, work it up
Step 3: Proceed to simple algorithm below for basic considerations that can be made to general care if hyperkalemia has persisted for more than 48 hours or if level is potentially life threatening. For life threatening levels, immediately review step 5 for further management considerations.

Step 4 (Diagnostics): Urine lytes, BUN, Cr+, Serum K level, blood glucose levels, renin & aldosterone levels may be helpful in those that might have adrenal pathologies.
 Step 5 Treatment Considerations: <u>Always treat the underlying cause</u>. The intensivist should guide the treatment portion/management section. See algorithm below for quick reference to accepted treatment. Symptoms pertain to ECG/Telemetry changes, and chest pain.

*Calcium gluconate should not be implemented in those with digitalis drug therapy unless otherwise specified by the intensivist.

X. References:

- Braun, M.M., Barstow, H.C., & Pyzocha, J.N. (2015) Diagnosis and management of sodium disorders: hyponatremia and hypernatremia. *American Family Physician*, *91*(5), 299-307.
- Hoorn, E.J, & Zieste, R. (2017). Diagnosis and treatment of hyponatremia: compilation of the guidelines. *Journal of the American Society of Nephrology*, 28(5), 1340-1349. doi: 10.1681/ASN.2016101139
- Kim, S.W. (2006). Hypernatremia successful treatment. *Electrolytes & Blood Pressure*,4(2), 66-71. doi: 10.5049/EBP.2006.4.2.66
- Lidner, G., & Funk, GC. (2013) Hypernatremia in critically ill patients. *Journal of Critical Care*, 28(2), e11-20. doi: 10.1016/j.jcrc.2012.05.001.
- Muhsin, S.A., & Mount, B.D. (2016). Diagnosis and treatment of hypernatremia. *Best Practice* & *Research Clinical Endocrinology* & *Metabolism*,30(2), 189-203. doi: 10.1016/j.beem.2016.02.014
- Rossignol, P., Legrand, M., Kosiborod, M., Hollenberge, S.M., Peacock, W.F., Emmett, M.,
 Epstein, M., . . . Epstein, M. (2016). Emergency management of severe hyperkalemia:
 guideline for best practice and opportunities for the future. *Pharmacological Research*, *113*, 585-591. doi: 10.1016/j.phrs.2016.09.039
- Sterns, H.R. (2019). Etiology and evaluation of hypernatremia in adults. [web page]. Retrieved from https://www.uptodate.com/contents/etiology-and-evaluation-of-hypernatremiain-

adults?search=Etiology%20and%20evaluation%20of%20hypernatremia%20in%20adults &source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 Verbalis, G.J., Goldsmith, R.S., Greenberg, A., Korzelius, C., Schrier, W.R., Sterns, H.R., &
Thompson, J.C. (2013). Diagnosis, evaluation, and treatment of hyponatremia: expert
panel recommendations. *American Journal of Medicine*, 127(7), S1-42. doi:
10.1016/j.amjmed.2013.07.006

Viera, A.J., & Wouk, N. (2015). Potassium disorders: hypokalemia and hyperkalemia. *American Family Physician, 92*(6), 487-495.