

Cristina Zepeda, PhD
Assistant Professor of Psychology and Human Development

Email: Cristina.Zepeda@Vanderbilt.edu









## Science of Learning

Learning is an active, constructive process

(Chi, 2009; Freeman et al., 2014)

### Deliberate practice matters

(Ericsson et al., 1993)

### Prior knowledge shapes learning

(Bransford et al., 2000)

### Feedback guides improvement

(Hattie & Timperley, 2007; Shute, 2008)

### Context and transfer are key

(Barnett & Ceci, 2002; Perkins & Salomon, 1992)

## Attention and engagement are essential

(Sweller et al., 2019)

#### Self-Regulated Learning

(for a review, see Kim et al., 2023)

#### Metacognition

(Flavell, 1979; Dunlosky & Metcalfe, 2009)

#### Motivation and beliefs

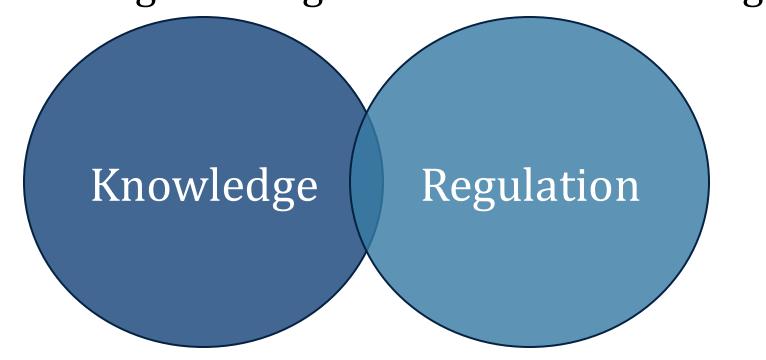
(Eccles & Wigfield, 2002)

### Social and emotional factors

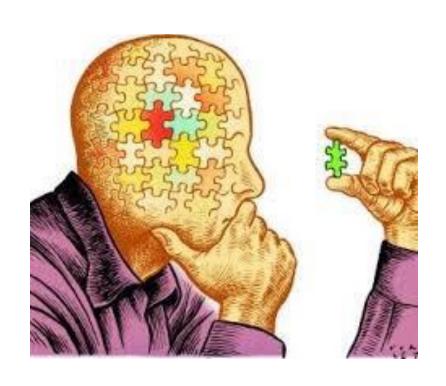
(Pekrun & Linnenbrink-Garcia, 2014)

# Central Questions




How can we support students to effectively regulate their learning?

How can we do so equitably and inclusively?

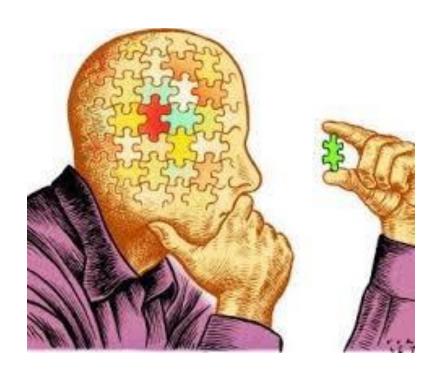

# Metacognition

"Thinking about thinking"

"Knowledge and regulation of one's thinking"

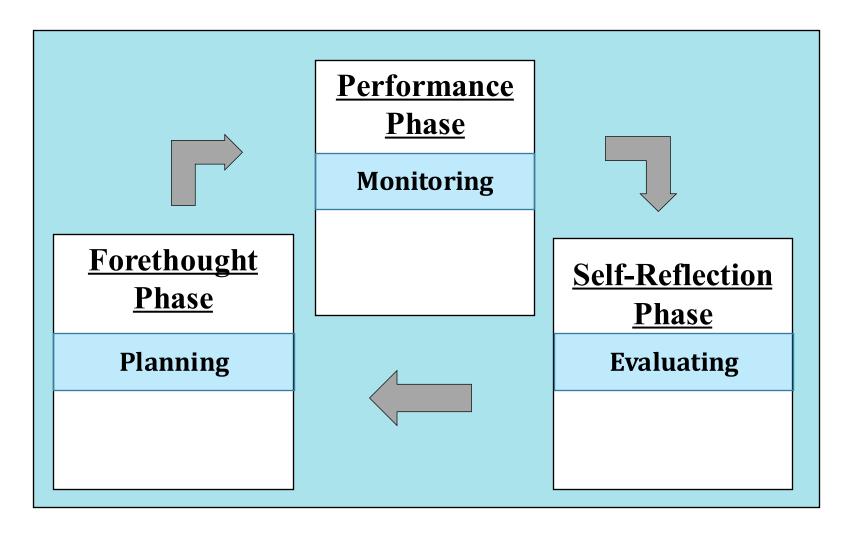


### Metacognitive Knowledge




1. Declarative – "What"

2. Procedural – "How"


3. Conditional – "When and Why"

### Metacognitive Regulation



- 1. Planning setting goals, selecting strategies, and organizing before the task
- 2. Monitoring checking one's understanding and progress throughout the task
- 3. Evaluating reflecting after the task to determining effectiveness of strategies, understanding, and performance

## Self-Regulated Learning



Do students use effective learning/study strategies?

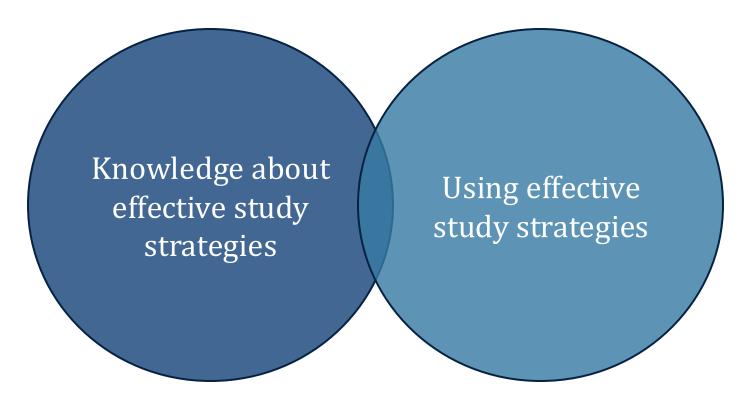
How do we support them to use effective strategies?

How do students think they study?

Knowledge about effective learning/study strategies

Research has identified several effective learning/study strategies (Dunlosky et al., 2013)

 Retrieval practice, self-explanation, comparison, spaced practice


But! Students have "metacognitive illusions" and inaccurate "metacognitive judgments" about strategy effectiveness (McCabe, 2011)

Regulating by using effective study strategies

Students also tend to use more ineffective strategies (e.g., Hartwig & Dunlosky, 2012)

• Highlighting, rewriting notes, rereading

Why? Because they feel more fluent than effective strategies. Effective strategies feel more difficult and the benefits aren't immediately clear (McCabe, 2011)



"Desirable Difficulties"

Knowledge about effective study strategies

Using effective study strategies

# Supporting Students to be more Effective

- The tell them approach (Dignath & Büttner, 2008; Donker et al., 2014; Kirk-Johnson et al. 2019; Zepeda et al., 2020)
  - Often increases knowledge, but not sustainable
  - Need sustained training and reasons why it is beneficial
  - Seems to be less effective at the college level
  - Knowing is one thing, but being motivated to do it is another
- Embedding strategies into course structures (Agarwal et al., 2012)
  - Low-stakes quizzes (spaced retrieval practice)
  - Retrieval prompts

# In Health Sciences Contexts – How can we support metacognition?

- Tell them what metacognition is! And why it is important
- Modeling and integrating into practices
  - Plans before clinical rotations/interactions with patients
    - Examples of what it can look like
    - Explicit that they are required
    - Feedback on what can make them better



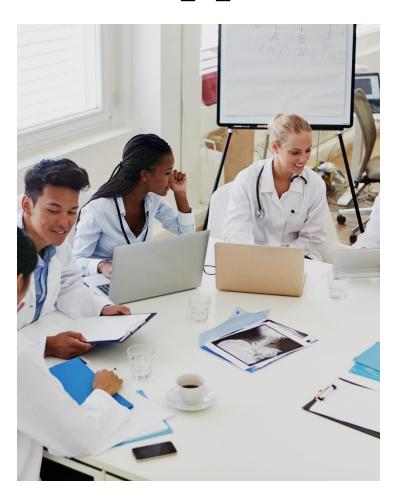
# In Health Sciences Contexts – How can we support metacognition?

- Modeling and integrating into practices
  - Support through your prompts/ discussions

"What are you unsure of how to do?"

"Why did you make that decision?"

"What was confusing or difficult about today's lesson?"


"What did you learn today/yesterday?"

"What could you have done differently?"

"What would you do differently next time?"



# In Health Sciences Contexts - How can we support metacognition?



- Diagnostic error debriefs
  - E.g., case-based discussions to highlight how their reasoning led to errors
- Reflective practices
  - E.g., journaling
- Peer teaching
  - E.g., collaborative activities, skills training
- Pause and predict exercises
- Structured feedback
  - E.g., learner self-assesses and then the educator provides feedback to increase calibration

# In Health Sciences Contexts – How can we support metacognition?

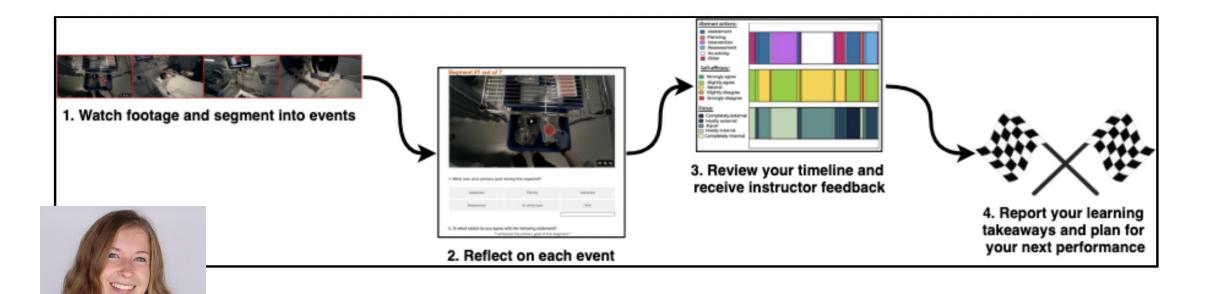
Reflection Practices integrated into Simulations



### Transforming Experiences into Expertise: Leveraging Event Cognition to Support Self-Regulation in a Practical Learning System



Maddie Lee Mason, PhD
Postdoctoral Fellow
2025 NLN Emerging Nursing
Scholar Award


Developed a **personalized guided-reflection tool** to be used **after clinical simulations**, intended to complement (not replace) standard debriefs in nursing education

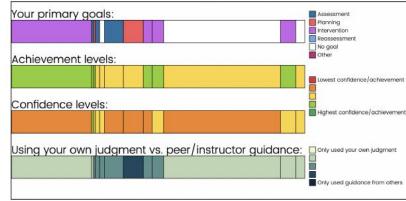
Improved nursing students' confidence and metacognitive judgment accuracy

Work is ongoing and collaborative with folks at the nursing school

### What did the Reflect System do?

Provide a structured, personalized reflection experience

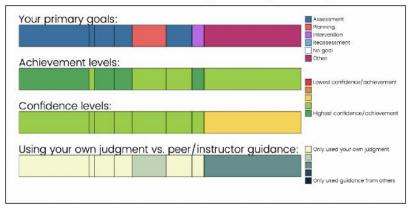



Maddie Lee Mason, PhD Postdoctoral Fellow 2025 NLN Emerging Nursing Scholar Award

### What did the Reflect System do?

Provide a structured, personalized reflection experience

Maddie Lee Mason, PhD Postdoctoral Fellow 2025 NLN Emerging Nursing Scholar Award


# Student A Instructor competency rating: 70% Pre-reflection competency rating: 87% Post-reflection competency rating: 72%



"I see now that I was forgetting things during the assessment, and...I was just not communicating well and was super stiff and just needed to be more relaxed."

#### Student B

Instructor competency rating: 98%
Pre-reflection competency rating: 80%
Post-reflection competency rating: 85%



"I seemed much more confident in the video than I had felt during and afterwards, so just need to remind myself that I know the information, even if it is an unfamiliar situation..."

Figure 23. Illustrative examples of the impact the Reflect System had on metacognitive judgment









THINK ALOUDS

**SELF-REPORTS** 

**OBSERVATIONS** 

LEARNING ANALYTICS



THINK ALOUDS

Having them say everything they are thinking as the complete a task

Probing them to say what they are thinking during particular points of an activity

Allows you to see their thoughts and logic, challenging to do at scale



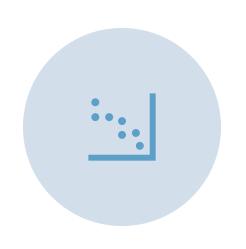
**SELF-REPORTS** 

Have them respond to a validated scale (general use, use for problem-solving tasks)

Ask an open-ended question

Have them rate their confidence in how they performed a task, or how well they think they will do at a task

Give vignettes with scenarios and ask them to state their metacognitive processes (e.g., plan, tracking progress, evaluating)

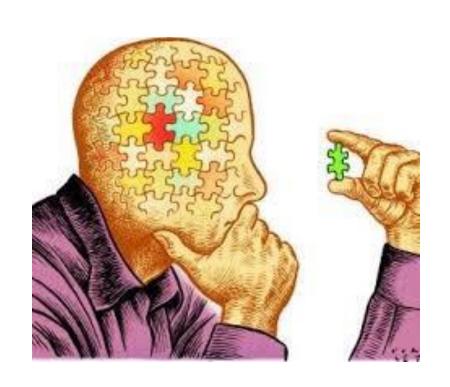



Think alouds are observational

But you can also have them observe others as well as themselves

**OBSERVATIONS** 

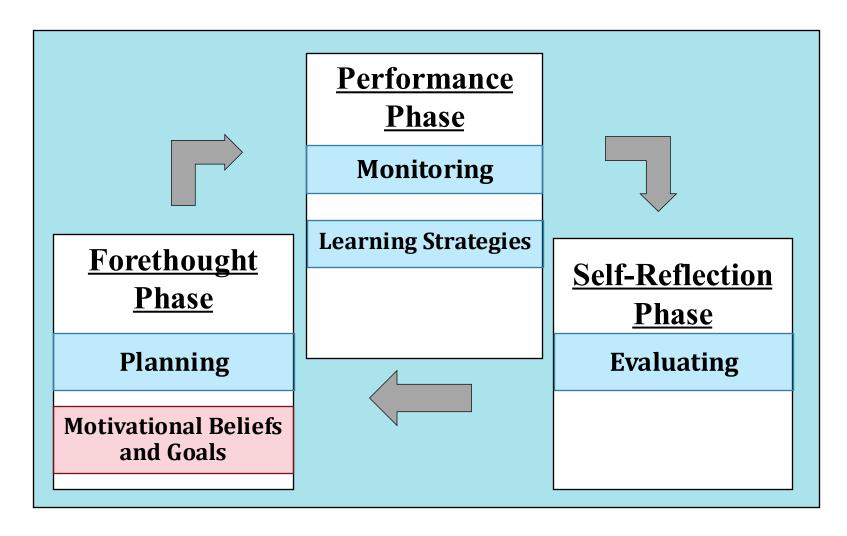
When they observe themselves, the scenarios you pick can be common places people make mistakes, a place they didn't feel good about, an error that you caught as it was happening, etc.




Track behaviors through behavioral log data in online systems (learning management system, virtual reality exercises, simulations, training modules)

LEARNING ANALYTICS

Remember though – just because someone says it captures metacognition, doesn't mean it is the right fit, you still have to evaluate it


# Metacognition is just one piece of the puzzle



"Heads and Hearts"
"Seed and the Soil"

Motivation is another critical aspect in terms of them using effective strategies and persisting

## Self-Regulated Learning

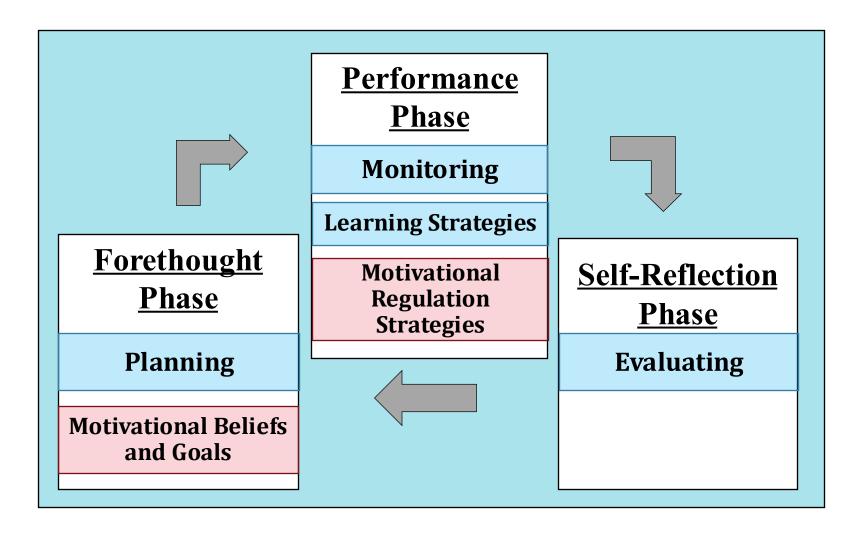


### Five Areas of Motivation Research












FIND VALUE REDUCE COST RE-FRAME APPRAISALS & ATTRIBUTIONS

CREATE APPROPRIATE CHALLENGES PROVIDE CHOICE

## Self-Regulated Learning



### **Motivational Learning Strategies**

### Mastery-approach self-talk

"I persuade myself to work hard just for the sake of learning"

### Performance-approach self-talk

"I try to make myself work harder by thinking about getting good grades"

### Utility-value self-talk

"I tell myself that it will help me reach my career goals"

#### **Self-consequating**

"I make a deal with myself that if I get a certain amount of work done, I can do something fun afterwards"

#### **Proximal goal setting**

"I break down the workload in small segments so I get the feeling that I can handle it more easily"

#### **Interest enhancement**

"I think of a way to make the work seem more interesting"

# If that isn't complicated enough, let's add in AI...

Studies are still coming out on what the implications mean of having access to large language models

Metacognition is even more critical and being able to evaluate the information for accuracy

But, it also has advantages – adaptive learning, learning analytics, virtual learning/practice



## **Takeaways**

- Students regulate their learning through various strategies that can work together
- As educators we can support the use of these strategies in how we structure our courses and interactions types of activities, feedback, and assessments

## **Takeaways**

Medicine's complexity demands adaptive expertise (Hatano & Inagaki, 1986), not rote recall

Metacognition is the **engine of adaptive expertise** and motivation **sustains it** — essential for lifelong learning, reflective practice, and reducing errors

As educators, we should teach how to learn, not just what to know

# Food for Thought

### Remember to consider individual differences

- Consider the societal pressures, expectations, and responsibilities of an individual
- Consider the prior experiences or lack thereof
- ❖ Illusions of knowing: fluency, familiarity, and ease mislead judgments (Bjork et al., 2013)
- **Cognitive load and stress: reduces monitoring capacity** (van Merriënboer & Sweller, 2010)
- ❖ Feedback deficits: learners often receive outcome feedback, not process feedback
- Cultural barriers: "confidence as competence" norms discourage uncertainty and reflection

